Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire.

Tytuł:
Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire.
Autorzy:
Koonin EV; National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA. .
Makarova KS; National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
Wolf YI; National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
Krupovic M; Department of Microbiology, Institut Pasteur, Paris, France. .
Źródło:
Nature reviews. Genetics [Nat Rev Genet] 2020 Feb; Vol. 21 (2), pp. 119-131. Date of Electronic Publication: 2019 Oct 14.
Typ publikacji:
Journal Article; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't; Review
Język:
English
Imprint Name(s):
Original Publication: London, UK : Nature Pub. Group, [2000-
MeSH Terms:
Evolution, Molecular*
Interspersed Repetitive Sequences*
Biological Evolution ; Gene Transfer, Horizontal ; Host-Pathogen Interactions
References:
Koonin, E. V. & Dolja, V. V. A virocentric perspective on the evolution of life. Curr. Opin. Virol. 3, 546–557 (2013). (PMID: 238501694326007)
Moreira, D. & Lopez-Garcia, P. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306–311 (2009). (PMID: 19270719)
Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005). (PMID: 15886693)
Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 479–480, 2–25 (2015). (PMID: 257718065898234)
Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in archaea and bacteria. Annu. Rev. Microbiol. 71, 233–261 (2017). (PMID: 286578855898197)
Szathmary, E. & Demeter, L. Group selection of early replicators and the origin of life. J. Theor. Biol. 128, 463–486 (1987). (PMID: 2451771)
Szathmary, E. & Maynard Smith, J. From replicators to reproducers: the first major transitions leading to life. J. Theor. Biol. 187, 555–571 (1997). (PMID: 9299299)
Takeuchi, N. & Hogeweg, P. The role of complex formation and deleterious mutations for the stability of RNA-like replicator systems. J. Mol. Evol. 65, 668–686 (2007). (PMID: 17955153)
Takeuchi, N. & Hogeweg, P. Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life. Phys. Life Rev. 9, 219–263 (2012). (PMID: 227273993466355)
Koonin, E. V., Wolf, Y. I. & Katsnelson, M. I. Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states. Biol. Direct 12, 31 (2017). (PMID: 292028325715634)
Berezovskaya, F., Karev, G. P., Katsnelson, M. I., Wolf, Y. I. & Koonin, E. V. Stable coevolutionary regimes for genetic parasites and their hosts: you must differ to coevolve. Biol. Direct 13, 27 (2018). (PMID: 306217436822691)
Koonin, E. V. Viruses and mobile elements as drivers of evolutionary transitions. Phil. Trans. R. Soc. B Biol. Sci. 371, 20150442 (2016). (PMID: 274315204958936)
Forterre, P. & Prangishvili, D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann. NY Acad. Sci. 1178, 65–77 (2009). (PMID: 19845628)
Forterre, P. & Prangishvili, D. The major role of viruses in cellular evolution: facts and hypotheses. Curr. Opin. Virol. 3, 558–565 (2013). (PMID: 23870799)
Koonin, E. V. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol. Direct 12, 5 (2017). (PMID: 281877925303251)
Iranzo, J., Puigbo, P., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Inevitability of genetic parasites. Genome Biol. Evol. 8, 2856–2869 (2016). (PMID: 275032915631039)
Iranzo, J., Cuesta, J. A., Manrubia, S., Katsnelson, M. I. & Koonin, E. V. Disentangling the effects of selection and loss bias on gene dynamics. Proc. Natl Acad. Sci. USA 114, E5616–E5624 (2017). (PMID: 28652353)
Iranzo, J. & Koonin, E. V. How genetic parasites persist despite the purge of natural selection. Europhys. Lett. 122, 58001 (2018).
Wolf, Y. I., Katsnelson, M. I. & Koonin, E. V. Physical foundations of biological complexity. Proc. Natl Acad. Sci. USA 115, E8678–E8687 (2018). (PMID: 30150417)
Puigbò, P., Makarova, K. S., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Reconstruction of the evolution of microbial defense systems. BMC Evol. Biol. 17, 94 (2017).
Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4, 19 (2009). (PMID: 194933402701414)
Van Melderen, L. Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol. 13, 781–785 (2010). (PMID: 21041110)
Van Melderen, L. & Saavedra De Bast, M. Bacterial toxin-antitoxin systems: more than selfish entities? PLOS Genet. 5, e1000437 (2009). (PMID: 193258852654758)
Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70, 768–784 (2018). (PMID: 29398446)
Lehnherr, H., Maguin, E., Jafri, S. & Yarmolinsky, M. B. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233, 414–428 (1993). (PMID: 8411153)
Hazan, R. & Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genomics 272, 227–234 (2004). (PMID: 15316771)
Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009). (PMID: 19124776)
Dy, R. L., Przybilski, R., Semeijn, K., Salmond, G. P. & Fineran, P. C. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res. 42, 4590–4605 (2014). (PMID: 244650053985639)
Brantl, S. & Jahn, N. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol. Rev. 39, 413–427 (2015). (PMID: 25808661)
Gerdes, K., Christensen, S. K. & Lobner-Olesen, A. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382 (2005). (PMID: 15864262)
Mruk, I. & Kobayashi, I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42, 70–86 (2014). (PMID: 23945938)
Ichige, A. & Kobayashi, I. Stability of EcoRI restriction-modification enzymes in vivo differentiates the EcoRI restriction-modification system from other postsegregational cell killing systems. J. Bacteriol. 187, 6612–6621 (2005). (PMID: 161665221251573)
Mochizuki, A., Yahara, K., Kobayashi, I. & Iwasa, Y. Genetic addiction: selfish gene's strategy for symbiosis in the genome. Genetics 172, 1309–1323 (2006).
Orlowski, J. & Bujnicki, J. M. Structural and evolutionary classification of type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res. 36, 3552–3569 (2008). (PMID: 184567082441816)
Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41, 4360–4377 (2013). (PMID: 234709973632139)
Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat Rev Genet. 16, 472–482 (2015). (PMID: 26184597)
Martin, W. F. Too much eukaryote LGT. Bioessays 39, 1700115 (2017).
Ku, C. & Martin, W. F. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule. BMC Biol. 14, 89 (2016). (PMID: 277511845067920)
Hirt, R. P., Alsmark, C. & Embley, T. M. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Curr. Opin. Microbiol. 23, 155–162 (2015). (PMID: 254833524728198)
Aravind, L., Burroughs, A. M., Zhang, D. & Iyer, L. M. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb. Perspect. Biol. 6, a016063 (2014). (PMID: 249847754067991)
Iyer, L. M., Abhiman, S. & Aravind, L. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101, 25–104 (2011). (PMID: 21507349)
Krishnan, A., Burroughs, A. M., Iyer, L. M. & Aravind, L. Unexpected evolution of lesion-recognition modules in eukaryotic NER and kinetoplast DNA dynamics proteins from bacterial mobile elements. iScience 9, 192–208 (2018). (PMID: 303961526222260)
Anantharaman, V. & Aravind, L. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol. 4, R81 (2003). (PMID: 14659018329420)
Koonin, E. V. & Zhang, F. Coupling immunity and programmed cell suicide in prokaryotes: life-or-death choices. Bioessays 39, 1–9 (2017). (PMID: 27896818)
Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019).
Mendoza, S. D. & Bondy-Denomy, J. Cas13 helps bacteria play dead when the enemy strikes. Cell Host Microbe 26, 1–2 (2019). (PMID: 31295418)
Bautista, M. A., Zhang, C. & Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. mBio 6, e02565-14 (2015).
Shabalina, S. A. & Koonin, E. V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578–587 (2008). (PMID: 187156732695246)
Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014). (PMID: 251922634691850)
Petrova, Z. O., Broussard, G. W. & Hatfull, G. F. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection. Microbiology 161, 1539–1551 (2015). (PMID: 260667984681040)
Dedrick, R. M. et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2, 16251 (2017). (PMID: 280679065508108)
Gentile, G. M. et al. More evidence of collusion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. mBio 10, e00196-19 (2019).
Montgomery, M. T., Guerrero Bustamante, C. A., Dedrick, R. M., Jacobs-Sera, D. & Hatfull, G. F. Yet more evidence of collusion: a new viral defense system encoded by Gordonia phage CarolAnn. mBio 10, e02417-18 (2019).
Faure, G. et al. CRISPR–Cas in mobile genetic elements: counter-defense and beyond. Nat. Rev. Microbiol. 17, 513–525 (2019). (PMID: 31165781)
Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018). (PMID: 29062071)
Koonin, E. V. & Makarova, K. S. Anti-CRISPRs on the march. Science 362, 156–157 (2018). (PMID: 30309933)
Folimonova, S. Y. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J. Virol. 86, 5554–5561 (2012). (PMID: 223982853347309)
Bergua, M. et al. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J. Virol. 88, 11327–11338 (2014). (PMID: 250313514178825)
Zhang, X. F. et al. A New mechanistic model for viral cross protection and superinfection exclusion. Front. Plant Sci. 9, 40 (2018). (PMID: 294229125788904)
Nethe, M., Berkhout, B. & van der Kuyl, A. C. Retroviral superinfection resistance. Retrovirology 2, 52 (2005). (PMID: 161072231224871)
Schaller, T. et al. Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J. Virol. 81, 4591–4603 (2007). (PMID: 173011541900174)
Zhang, X. F. et al. A self-perpetuating repressive state of a viral replication protein blocks superinfection by the same virus. PLOS Pathog. 13, e1006253 (2017). (PMID: 282677735357057)
Biryukov, J. & Meyers, C. Superinfection exclusion between two high-risk human papillomavirus types during a coinfection. J. Virol. 92, e01993-17 (2018).
Kumar, N., Sharma, S., Barua, S., Tripathi, B. N. & Rouse, B. T. Virological and immunological outcomes of coinfections. Clin. Microbiol. Rev 31, e00111–e00117 (2018). (PMID: 299765546148187)
Fillol-Salom, A. et al. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J. 12, 2114–2128 (2018). (PMID: 298754356092414)
Penades, J. R. & Christie, G. E. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annu. Rev. Virol. 2, 181–201 (2015). (PMID: 26958912)
Novick, R. P. & Ram, G. Staphylococcal pathogenicity islands-movers and shakers in the genomic firmament. Curr. Opin. Microbiol. 38, 197–204 (2017). (PMID: 291007625884141)
Duponchel, S. & Fischer, M. G. Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses. PLOS Pathog. 15, e1007592 (2019). (PMID: 308971856428243)
Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced reactivation 1 of the virophage mavirus. Nature 540, 288–291 (2016). (PMID: 27929021)
Koonin, E. V. & Krupovic, M. Virology: a parasite's parasite saves host's neighbours. Nature 540, 204–205 (2016).
Blanc, G., Gallot-Lavallee, L. & Maumus, F. Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses. Proc. Natl Acad. Sci. USA 112, E5318–E5326 (2015). (PMID: 26305943)
Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007). (PMID: 17034960)
Kapitonov, V. V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA 103, 4540–4545 (2006). (PMID: 16537396)
Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science 332, 231–234 (2011).
Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in polinton (maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014). (PMID: 247736954028283)
Krupovic, M. & Koonin, E. V. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13, 105–115 (2015). (PMID: 25534808)
Krupovic, M. & Koonin, E. V. Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr. Opin. Microbiol. 31, 25–33 (2016). (PMID: 268369824899294)
Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019). (PMID: 309231966656896)
Knezevic, P., Voet, M. & Lavigne, R. Prevalence of Pf1-like (pro)phage genetic elements among Pseudomonas aeruginosa isolates. Virology 483, 64–71 (2015). (PMID: 25965796)
Burgener, E. B. et al. Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis. Sci. Transl Med. 11, eaau9748 (2019). (PMID: 30996083)
Schmitt, M. J. & Breinig, F. Yeast viral killer toxins: lethality and self-protection. Nat. Rev. Microbiol. 4, 212–221 (2006). (PMID: 16489348)
Ghabrial, S. A., Caston, J. R., Jiang, D., Nibert, M. L. & Suzuki, N. 50-plus years of fungal viruses. Virology 479–480, 356–368 (2015). (PMID: 25771805)
Becker, B. & Schmitt, M. J. Yeast Killer Toxin K28: biology and unique strategy of host cell intoxication and killing. Toxins 9, E333 (2017).
Krupovic, M. & Cvirkaite-Krupovic, V. Virophages or satellite viruses? Nat. Rev. Microbiol. 9, 762–763 (2011). (PMID: 22016897)
Gnanasekaran, P. & Chakraborty, S. Biology of viral satellites and their role in pathogenesis. Curr. Opin. Virol. 33, 96–105 (2018). (PMID: 30144641)
Murant, A. F. & Mayo, M. Satellites of plant viruses. Annu. Rev. Phytopathol. 20, 49–70 (1982).
Qiu, W. & Scholthof, K. B. Defective interfering RNAs of a satellite virus. J. Virol. 75, 5429–5432 (2001). (PMID: 11333930114954)
Ndunguru, J. et al. Two Novel DNAs that enhance symptoms and overcome cmd2 resistance to cassava mosaic disease. J. Virol. 90, 4160–4173 (2016). (PMID: 268657124810563)
Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011). (PMID: 219086723194920)
Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018). (PMID: 293714246387622)
Novick, R. P. & Ram, G. The floating (pathogenicity) island: a genomic dessert. Trends Genet. 32, 114–126 (2016).
Carraro, N., Rivard, N., Burrus, V. & Ceccarelli, D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob. Genet. Elem. 7, 1–6 (2017).
Oliveira Alvarenga, D., Moreira, L. M., Chandler, M. & Varani, A. M. A practical guide for comparative genomics of mobile genetic elements in prokaryotic genomes. Methods Mol. Biol. 1704, 213–242 (2018). (PMID: 29277867)
Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017). (PMID: 281114615851899)
Makarova, K. S. et al. Predicted highly derived class 1 CRISPR-Cas system in Haloarchaea containing diverged Cas5 and Cas7 homologs but no CRISPR array. FEMS Microbiol. Lett. 366, fnz079 (2019). (PMID: 30993331)
Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016). (PMID: 27493190)
Krupovic, M., Béguin, P. & Koonin, E. V. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol. 38, 36–43 (2017). (PMID: 284727125665730)
Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 12, 36 (2014). (PMID: 248849534046053)
Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015). (PMID: 25488578)
Zhang, Y. et al. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569, 79–84 (2019).
Nowacki, M., Shetty, K. & Landweber, L. F. RNA-mediated epigenetic programming of genome rearrangements. Annu. Rev. Genomics Hum. Genet. 12, 367–389 (2011). (PMID: 218010223518427)
Bischerour, J. et al. Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. eLife 7, e37927 (2018). (PMID: 302239446143343)
Maurer-Alcala, X. X. & Nowacki, M. Evolutionary origins and impacts of genome architecture in ciliates. Ann. NY Acad. Sci. 1447, 110–118 (2019). (PMID: 310740106767857)
Yerlici, V. T. & Landweber, L. F. Programmed genome rearrangements in the ciliate oxytricha. Microbiol. Spectr. 2, MDNA3-0025-2014 (2014).
Vogt, A., Goldman, A. D., Mochizuki, K. & Landweber, L. F. Transposon domestication versus mutualism in ciliate genome rearrangements. PLOS Genet. 9, e1003659 (2013). (PMID: 239355293731211)
Midonet, C. & Barre, F. X. Xer site-specific recombination: promoting vertical and horizontal transmission of genetic information. Microbiol. Spectr. 2, MDNA3-0056-2014 (2014).
Castillo, F., Benmohamed, A. & Szatmari, G. Xer site specific recombination: double and single recombinase systems. Front. Microbiol. 8, 453 (2017). (PMID: 283738675357621)
Grindley, N. D., Whiteson, K. L. & Rice, P. A. Mechanisms of site-specific recombination. Annu. Rev Biochem. 75, 567–605 (2006). (PMID: 16756503)
Hickman, A. B. & Dyda, F. Mechanisms of DNA transposition. Microbiol. Spectr. 3, MDNA3-0034-2014 (2015).
Meinke, G., Bohm, A., Hauber, J., Pisabarro, M. T. & Buchholz, F. Cre recombinase and other tyrosine recombinases. Chem. Rev. 116, 12785–12820 (2016). (PMID: 27163859)
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15 (2017).
Kwun, M. J., Oggioni, M. R., De Ste Croix, M., Bentley, S. D. & Croucher, N. J. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res. 46, 11438–11453 (2018). (PMID: 303213756265443)
Wang, J. et al. A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2. Nucleic Acids Res. 46, 2521–2536 (2018). (PMID: 293611625861418)
Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015). (PMID: 264112975426118)
Koonin, E. V. & Makarova, K. S. Origins and evolution of CRISPR-Cas systems. Phil. Trans. R. Soc. B Biol. Sci. 374, 20180087 (2019). (PMID: 309052846452270)
Burroughs, A. M., Zhang, D., Schaffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015). (PMID: 265902624678834)
Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018). (PMID: 303374556659742)
Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science eeav7271 (2018).
Makarova, K. S., Aravind, L., Wolf, Y. I. & Koonin, E. V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6, 38 (2011). (PMID: 217563463150331)
Koonin, E. V. & Makarova, K. S. Mobile genetic elements and evolution of Crispr-Cas systems: all the way there and back. Genome Biol. Evol. 9, 2812–2825 (2017). (PMID: 289852915737515)
AlShayeb, B. et al. Clades of huge phage from across Earth’s ecosystems. bioRxiv, https://doi.org/10.1101/572362 (2019).
Krupovic, M. et al. Integrated mobile genetic elements in Thaumarchaeota. Environ. Microbiol. 21, 2056–2078 (2019).
Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nat. 494, 489–491 (2013).
McKitterick, A. C., LeGault, K. N., Angermeyer, A., Alam, M. & Seed, K. D. Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race. Phil. Trans. R. Soc. B Biol. Sci. 374, 20180089 (2019). (PMID: 309052886452262)
Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017). (PMID: 28811374)
Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).
Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019). (PMID: 311717066659118)
Bernheim, A., Bikard, D., Touchon, M. & Rocha, E. P. Co-occurrence of multiple CRISPRs and cas clusters suggests epistatic interactions. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/592600v1 (2019).
Newire, E., Aydin, A., Juma, S., Enne, V. & Roberts, A. P. Identification of a type IV CRISPR-Cas system located exclusively on IncHI1B/ IncFIB plasmids in Enterobacteriaceae. Preprint at bioRxiv https://doi.org/10.1101/536375 (2019).
Hudaiberdiev, S. et al. Phylogenomics of Cas4 family nucleases. BMC Evol. Biol. 17, 232 (2017). (PMID: 291796715704561)
Zhang, Z., Pan, S., Liu, T., Li, Y. & Peng, N. Cas4 nucleases can effect specific integration of CRISPR spacers. J. Bacteriol. 201, e00747-18 (2019). (PMID: 309363726531622)
Oliveira, P. H., Touchon, M. & Rocha, E. P. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014). (PMID: 251202634176335)
Murphy, J., Mahony, J., Ainsworth, S., Nauta, A. & van Sinderen, D. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Env. Microbiol. 79, 7547–7555 (2013).
Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013). (PMID: 23979432)
Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003). (PMID: 12626685150520)
Sternberg, N. & Coulby, J. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc. Natl Acad. Sci. USA 87, 8070–8074 (1990). (PMID: 2236019)
Song, H. K., Sohn, S. H. & Suh, S. W. Crystal structure of deoxycytidylate hydroxymethylase from bacteriophage T4, a component of the deoxyribonucleoside triphosphate-synthesizing complex. EMBO J. 18, 1104–1113 (1999). (PMID: 100645781171202)
Bryson, A. L. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. mBio 6, e00648 (2015). (PMID: 260816344471564)
Vlot, M. et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. Nucleic Acids Res. 46, 873–885 (2018). (PMID: 29253268)
Kutter, E. M. & Wiberg, J. S. Degradation of cytosin-containing bacterial and bacteriophage DNA after infection of Escherichia coli B with bacteriophage T4D wild type and with mutants defective in genes 46, 47 and 56. J. Mol. Biol. 38, 395–411 (1968). (PMID: 4305016)
Weigele, P. & Raleigh, E. A. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 116, 12655–12687 (2016). (PMID: 27319741)
Weynberg, K. D., Allen, M. J. & Wilson, W. H. Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9, E43 (2017). (PMID: 28294997)
Yamada, T., Onimatsu, H. & Van Etten, J. L. Chlorella viruses. Adv. Virus Res. 66, 293–336 (2006). (PMID: 168770631955756)
Agarkova, I. V., Dunigan, D. D. & Van Etten, J. L. Virion-associated restriction endonucleases of chloroviruses. J. Virol. 80, 8114–8123 (2006). (PMID: 168732671563800)
Ranjit, D. K., Endres, J. L. & Bayles, K. W. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J. Bacteriol. 193, 2468–2476 (2011). (PMID: 214217523133170)
Ghequire, M. G. & De Mot, R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol. Rev. 38, 523–568 (2014). (PMID: 24923764)
Lien, Y. W., Lai, E. M. & Type, V. I. Secretion effectors: methodologies and biology. Front. Cell Infect. Microbiol. 7, 254 (2017). (PMID: 286641515471719)
Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. B Biol. Sci. 370, 20150021 (2015).
Taylor, N. M. I., van Raaij, M. J. & Leiman, P. G. Contractile injection systems of bacteriophages and related systems. Mol. Microbiol. 108, 6–15 (2018). (PMID: 29405518)
Makarova, K. S. et al. Antimicrobial peptides, polymorphic toxins and self-nonself recognition systems in archaea: an untapped armory deployed in microbial conflicts. mBio https://doi.org/10.1128/mBio.00715-19 (2019).
Ghequire, M. G. K. & De Mot, R. The tailocin tale: peeling off phage tails. Trends Microbiol. 23, 587–590 (2015). (PMID: 26433692)
Ghequire, M. G. et al. Different ancestries of R tailocins in rhizospheric pseudomonas isolates. Genome Biol. Evol. 7, 2810–2828 (2015). (PMID: 264128564684702)
Krupovic, M., Forterre, P. & Bamford, D. H. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J. Mol. Biol. 397, 144–160 (2010). (PMID: 20109464)
Pope, W. H. et al. Genome sequences of Gordonia terrae phages Attis and SoilAssassin. Genome Announc. 4, e00591-16 (2016).
Garcia-Pino, A. et al. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J Biol. Chem. 283, 30821–30827 (2008). (PMID: 187578572576525)
Nichols, D. B., De Martini, W. & Cottrell, J. Poxviruses utilize multiple strategies to inhibit apoptosis. Viruses 9, E215 (2017).
Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003). (PMID: 12543935)
Brune, W. & Andoniou, C. E. Die another day: inhibition of cell death pathways by cytomegalovirus. Viruses 9, E249 (2017). (PMID: 28869497)
Koonin, E. V. & Krupovic, M. A movable defense. Scientist 29, 46–53 (2015).
Kapitonov, V. V., Makarova, K. S. & Koonin, E. V. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J. Bacteriol. 198, 797–807 (2015). (PMID: 26712934)
Entry Date(s):
Date Created: 20191016 Date Completed: 20200505 Latest Revision: 20201210
Update Code:
20240105
DOI:
10.1038/s41576-019-0172-9
PMID:
31611667
Czasopismo naukowe
All cellular life forms are afflicted by diverse genetic parasites, including viruses and other types of mobile genetic elements (MGEs), and have evolved multiple, diverse defence systems that protect them from MGE assault via different mechanisms. Here, we provide our perspectives on how recent evidence points to tight evolutionary connections between MGEs and defence systems that reach far beyond the proverbial arms race. Defence systems incur a fitness cost for the hosts; therefore, at least in prokaryotes, horizontal mobility of defence systems, mediated primarily by MGEs, is essential for their persistence. Moreover, defence systems themselves possess certain features of selfish elements. Common components of MGEs, such as site-specific nucleases, are 'guns for hire' that can also function as parts of defence mechanisms and are often shuttled between MGEs and defence systems. Thus, evolutionary and molecular factors converge to mould the multifaceted, inextricable connection between MGEs and anti-MGE defence systems.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies