Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Acute myocardial infarction activates magnocellular vasopressin and oxytocin neurones.

Tytuł:
Acute myocardial infarction activates magnocellular vasopressin and oxytocin neurones.
Autorzy:
Roy RK; Department of Physiology, University of Otago, Dunedin, New Zealand.; Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.; HeartOtago, University of Otago, Dunedin, New Zealand.
Augustine RA; Department of Physiology, University of Otago, Dunedin, New Zealand.; Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
Brown CH; Department of Physiology, University of Otago, Dunedin, New Zealand.; Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
Schwenke DO; Department of Physiology, University of Otago, Dunedin, New Zealand.; HeartOtago, University of Otago, Dunedin, New Zealand.
Źródło:
Journal of neuroendocrinology [J Neuroendocrinol] 2019 Dec; Vol. 31 (12), pp. e12808.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
MeSH Terms:
Myocardial Infarction/*physiopathology
Neurons/*physiology
Oxytocin/*physiology
Paraventricular Hypothalamic Nucleus/*physiology
Supraoptic Nucleus/*physiology
Vasopressins/*physiology
Animals ; Brain Stem/physiology ; Coronary Occlusion/physiopathology ; Male ; Proto-Oncogene Proteins c-fos/biosynthesis ; Rats ; Tyrosine 3-Monooxygenase/metabolism
References:
Mathers CD, Boerma T, Fat DM. The global burden of disease: 2004 update. Geneva: World Health Organization, 2008.
Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161-1172.
Gaudron P, Eilles C, Kugler I, Ertl G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation. 1993;87:755-763.
Harrison-Bernard LM. The renal renin-angiotensin system. Adv Physiol Educ. 2009;33:270-274.
Goldsmith SR, Udelson JE, Gheorghiade M. Dual vasopressin V1a/V2 antagonism: the next step in neurohormonal modulation in patients with heart failure? J Card Fail. 2018;24:112-114.
Brown CH. Magnocellular neurons and posterior pituitary function. Compr Physiol. 2016;61701-61741.
Goldsmith SR, Francis GS, Cowley AW Jr, Levine TB, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol. 1983;1:1385-1390.
Riegger GA, Liebau G, Bauer E, Kochsiek K. Vasopressin and renin in high output heart failure of rats: hemodynamic effects of elevated plasma hormone levels. J Cardiovasc Pharmacol. 1985;7:1-5.
Lindley TE, Doobay MF, Sharma RV, Davisson RL. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res. 2004;94:402-409.
Vahid-Ansari F, Leenen FH. Pattern of neuronal activation in rats with CHF after myocardial infarction. Am J Physiol. 1998;275:H2140-H2146.
Goldsmith SR, Gheorghiade M. Vasopressin antagonism in heart failure. J Am Coll Cardiol. 2005;46:1785-1791.
Schweiger TA, Zdanowicz MM. Vasopressin-receptor antagonists in heart failure. Am J Health Syst Pharm. 2008;65:807-817.
Verbalis JG, Mangione MP, Stricker EM. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology. 1991;128:1317-1322.
Li C, Wang W, Summer SN, et al. Molecular mechanisms of antidiuretic effect of oxytocin. J Am Soc Nephrol. 2008;19:225-232.
Sasaki S. Is oxytocin a player in antidiuresis? J Am Soc Nephrol. 2008;19:189-190.
Roy RK, Augustine RA, Brown CH, Schwenke DO. Activation of oxytocin neurons in the paraventricular nucleus drives cardiac sympathetic nerve activation following myocardial infarction in rats. Commun Biol. 2018;1:160.
Wu Y, Yin X, Wijaya C, Huang MH, McConnell BK. Acute myocardial infarction in rats. J Vis Exp. 48:e2464.
Zornoff LA, Paiva SA, Minicucci MF, Spadaro J. Experimental myocardium infarction in rats: analysis of the model. Arq Bras Cardiol. 2009;93:434-440.
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 7th edn. Amsterdam, The Netherlands: Academic Press; 2013.
Castilla-Ortega E, Rosell-Valle C, Pedraza C, Rodríguez de Fonseca F, Estivill-Torrús G, Santín LJ. Voluntary exercise followed by chronic stress strikingly increases mature adult-born hippocampal neurons and prevents stress-induced deficits in 'what-when-where' memory. Neurobiol Learn Mem. 2014;109:62-73.
Dabrowska J, Hazra R, Ahern TH, et al. Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology. 2011;36:1312-1326.
Nedungadi TP, Cunningham JT. Differential regulation of TRPC4 in the vasopressin magnocellular system by water deprivation and hepatic cirrhosis in the rat. Am J Physiol Regul Integr Comp Physiol. 2014;306:R304-R314.
Tagliaferro P, Morales M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol. 2008;506:616-626.
Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods. 1989;29:261-265.
Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol. 1993;14:173-213.
Patel KP, Zhang K, Kenney MJ, Weiss M, Mayhan WG. Neuronal expression of Fos protein in the hypothalamus of rats with heart failure. Brain Res. 2000;865:27-34.
Rinaman L, Stricker EM, Hoffman GE, Verbalis JG. Central c-Fos expression in neonatal and adult rats after subcutaneous injection of hypertonic saline. Neuroscience. 1997;79:1165-1175.
Johnstone LE, Brown CH, Meeren HK, et al. Local morphine withdrawal increases c-fos gene, Fos protein, and oxytocin gene expression in hypothalamic magnocellular neurosecretory cells. J Neurosci. 2000;20:1272-1280.
Augustine RA, Ladyman SR, Bouwer GT, et al. Prolactin regulation of oxytocin neurone activity in pregnancy and lactation. J Physiol. 2017;595:3591-3605.
Witayavanitkul N, Ait Mou Y, Kuster DW, et al. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem. 2014;289:8818-8827.
Ishikawa SE. Arginine vasopressin in heart failure. Circ J. 2014;78:2159-2161.
Shioda S, Nakai Y. Noradrenergic innervation of vasopressin-containing neurons in the rat hypothalamic supraoptic nucleus. Neurosci Lett. 1992;140:215-218.
Raby WN, Renaud LP. Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurones through different pathways. J Physiol. 1989;417:279-294.
Ablad B, Bjuro T, Bjorkman JA, et al. Metoprolol, but not atenolol, reduces stress induced neuropeptide Y release in pigs. Scand Cardiovasc J. 2010;44:273-278.
Gourine A, Bondar SI, Spyer KM, Gourine AV. Beneficial effect of the central nervous system beta-adrenoceptor blockade on the failing heart. Circ Res. 2008;102:633-636.
Marina N, Tang F, Figueiredo M, et al. Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats. Basic Res Cardiol. 2013;108:317.
Shirai M, Tsuchimochi H, Nagai H, et al. Pulmonary vascular tone is dependent on the central modulation of sympathetic nerve activity following chronic intermittent hypoxia. Basic Res Cardiol. 2014;109:432.
Cunningham JT, Bruno SB, Grindstaff RR, et al. Cardiovascular regulation of supraoptic vasopressin neurons. Prog Brain Res. 2002;139:257-273.
Leenen FH, Skarda V, Yuan B, White R. Changes in cardiac ANG II postmyocardial infarction in rats: effects of nephrectomy and ACE inhibitors. Am J Physiol. 1999;276:H317-H325.
Huang J, Hara Y, Anrather J, Speth RC, Iadecola C, Pickel VM. Angiotensin II subtype 1A (AT1A) receptors in the rat sensory vagal complex: subcellular localization and association with endogenous angiotensin. Neuroscience. 2003;122:21-36.
van der Kooy D, Koda LY. Organization of the projections of a circumventricular organ: the area postrema in the rat. J Comp Neurol. 1983;219:328-338.
Cai Y, Hay M, Bishop VS. Stimulation of area postrema by vasopressin and angiotensin II modulates neuronal activity in the nucleus tractus solitarius. Brain Res. 1994;647:242-248.
Consolim-Colombo FM, Hay M, Smith TC, Elizondo-Fournier M, Bishop VS. Subcellular mechanisms of angiotensin II and arginine vasopressin activation of area postrema neurons. Am J Physiol. 1996;271:R34-R41.
Schiltz JC, Hoffman GE, Stricker EM, Sved AF. Decreases in arterial pressure activate oxytocin neurons in conscious rats. Am J Physiol. 1997;273:R1474-R1483.
Jankowski M, Bissonauth V, Gao L, et al. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res Cardiol. 2010;105:205-218.
Kobayashi H, Yasuda S, Bao N, et al. Postinfarct treatment with oxytocin improves cardiac function and remodeling via activating cell-survival signals and angiogenesis. J Cardiovasc Pharmacol. 2009;54:510-519.
Contributed Indexing:
Keywords: myocardial infarction; oxytocin; paraventricular nucleus; supraoptic nucleus; vasopressin
Substance Nomenclature:
0 (Proto-Oncogene Proteins c-fos)
11000-17-2 (Vasopressins)
50-56-6 (Oxytocin)
EC 1.14.16.2 (Tyrosine 3-Monooxygenase)
Entry Date(s):
Date Created: 20191113 Date Completed: 20201207 Latest Revision: 20201214
Update Code:
20240105
DOI:
10.1111/jne.12808
PMID:
31715034
Czasopismo naukowe
Myocardial infarction (MI) is a leading cause of death worldwide. For those who survive the acute insult, the progressive dilation of the ventricle associated with chronic heart failure is driven by an adverse increase in circulating levels of the antidiuretic hormone, vasopressin, which is secreted from hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) nerve terminals. Although increased vasopressin neuronal activity has been demonstrated in the latter stages of chronic heart failure, we hypothesised that vasopressin neurones become activated immediately following an acute MI. Male Sprague-Dawley rats were anaesthetised and an acute MI was induced by ligation of the left anterior descending coronary artery. After 90 minutes of myocardial ischaemia, brains were collected. Dual-label immunohistochemistry was used to quantify the expression of Fos protein, a marker of neuronal activation, within vasopressin- or oxytocin-labelled neurones of the hypothalamic PVN and SON. Fos protein and tyrosine hydroxylase within the brainstem were also quantified. The results obtained show that the expression of Fos in both vasopressin and oxytocin neurones of the PVN and SON was significantly elevated as soon as 90 minutes post-MI compared to sham rats. Moreover, Fos protein was also elevated in tyrosine hydroxylase neurones in the nucleus tractus solitarius and rostral ventrolateral medulla of MI rats than sham rats. We conclude that magnocellular vasopressin and oxytocin neuronal activation occurs immediately following acute MI, rather than in the later stages of chronic heart failure. Therefore, prompt vasopressin antagonist therapy as an adjunct treatment for acute MI may impede the progression of ventricular dilatation, which remains a key adverse hallmark of chronic heart failure.
(© 2019 British Society for Neuroendocrinology.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies