Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of human active mobility in rural areas: development and validity tests of three different approaches.

Tytuł:
Prediction of human active mobility in rural areas: development and validity tests of three different approaches.
Autorzy:
Klous G; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands. .; Institute for Risk Assessment Sciences, Division Environmental Epidemiology and Veterinary Public Health, Utrecht University, Utrecht, The Netherlands. .
Kretzschmar MEE; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands.; National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
Coutinho RA; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands.
Heederik DJJ; Institute for Risk Assessment Sciences, Division Environmental Epidemiology and Veterinary Public Health, Utrecht University, Utrecht, The Netherlands.
Huss A; Institute for Risk Assessment Sciences, Division Environmental Epidemiology and Veterinary Public Health, Utrecht University, Utrecht, The Netherlands.
Źródło:
Journal of exposure science & environmental epidemiology [J Expo Sci Environ Epidemiol] 2020 Nov; Vol. 30 (6), pp. 1023-1031. Date of Electronic Publication: 2019 Nov 26.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Nature Pub. Group, c2006-
MeSH Terms:
Air Pollutants*/analysis
Bicycling ; Environmental Exposure ; Humans ; Netherlands ; Transportation
References:
Nieuwenhuijsen MJ, (ed). Exposure assessment in environmental epidemiology. 2nd ed. Oxford University Press; Oxford, 2015. ISBN 9780199378784.
Janssen NAH, Hoek G, Simic-lawson M, Fischer P, Van BreeL, Brink H, et al. Black carbon and health effects of airborne particles compared with PM10 and PM2.5 12. Environ Health Perspect. 2011;119:1691–9. https://doi.org/10.1289/ehp.1003369 . (PMID: 10.1289/ehp.1003369218105523261976)
Beekhuizen J, Vermeulen R, Kromhout H, Bürgi A, Huss A. Geospatial modelling of electromagnetic fields from mobile phone base stations. Sci Total Environ. 2013;445–446:202–9. https://doi.org/10.1016/j.scitotenv.2012.12.020 . (PMID: 10.1016/j.scitotenv.2012.12.02023333516)
de Rooij MMT, Heederik DJJ, Borlée F, Hoek G, Wouters IM. Spatial and temporal variation in endotoxin and PM10 concentrations in ambient air in a livestock dense area. Environ Res. 2017;153:161–70. https://doi.org/10.1016/j.envres.2016.12.004 . (PMID: 10.1016/j.envres.2016.12.00427984760)
Nyhan M, Grauwin S, Britter R, Misstear B, McNabola A, Laden F, et al. “Exposure track”—the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution. Environ Sci Technol. 2016;50:9671–81. (PMID: 10.1021/acs.est.6b02385)
Smith JD, Mitsakou C, Kitwiroon N, Barratt BM, Walton HA, Taylor JG, et al. London hybrid exposure model: improving human exposure estimates to NO 2 and PM 2.5 in an urban setting. Environ Sci Technol. 2016;50:11760–8. (PMID: 10.1021/acs.est.6b01817)
Breen MS, Long TC, Schultz BD, Crooks J, Breen M, Langstaff JE, et al. Assessments: model evaluation in central North Carolina. J Expo Sci Environ Epidemiol. 2014;24:412–20. https://doi.org/10.1038/jes.2014.13. (PMID: 10.1038/jes.2014.13.246192944269558)
Gerharz LE, Pebesma E. Using geostatistical simulation to disaggregate air quality model results for individual exposure estimation on GPS tracks. Stoch Environ Res Risk Assess. 2013;27:223–34. (PMID: 10.1007/s00477-012-0578-9)
Mueller N, Rojas-Rueda D, Cole-Hunter T, de Nazelle A, Dons E, Gerike R, et al. Health impact assessment of active transportation: a systematic review. Prev Med. 2015;76:103–14. https://doi.org/10.1016/j.ypmed.2015.04.010 . (PMID: 10.1016/j.ypmed.2015.04.01025900805)
Harrison F, Burgoine T, Corder K, van Sluijs EMF, Jones A. How well do modelled routes to school record the environments children are exposed to? a cross-sectional comparison of GIS-modelled and GPS-measured routes to school. Int J Health Geogr. 2014;13:1–12.
Vich, G, Urban Forestry & Urban Greening. (2018), https://doi.org/10.1016/j.ufug.2018.08.008 .
Park YM, Kwan MP. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place. 2017;43:85–94. https://doi.org/10.1016/j.healthplace.2016.10.002 . (PMID: 10.1016/j.healthplace.2016.10.00227914271)
Armstrong BG. Effect of measurement error on epidemiological studies of environmental and occupational exposures. Occup Environ Med. 1998;55:651–6. (PMID: 10.1136/oem.55.10.651)
Kelly P, Krenn P, Titze S, Stopher P, Foster C, Kelly P, et al. Quantifying the difference between self-reported and global positioning systems-measured journey durations: a systematic review transport reviews. Transport Reviews. 2013;33:443–59. https://doi.org/10.1080/01441647.2013.815288 .
Klous G, Smit LAM, Borlée F, Coutinho RA, Kretzschmar MEE, Heederik DJJ, et al. Mobility assessment of a rural population in the Netherlands using GPS measurements. Int J Health Geogr. 2017;16:1–13.
Burgoine T, Jones AP, Namenek Brouwer RJ, Benjamin Neelon SE. Associations between BMI and home, school and route environmental exposures estimated using GPS and GIS: do we see evidence of selective daily mobility bias in children? Int J Health Geogr. 2015;14:1–12. (PMID: 10.1186/1476-072X-14-8)
De Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, et al. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut. 2013;176:92–9. https://doi.org/10.1016/j.envpol.2012.12.032 . (PMID: 10.1016/j.envpol.2012.12.032234167433600144)
Dons E, Van Poppel M, Kochan B, Wets G, Int Panis L. Implementation and validation of a modeling framework to assess personal exposure to black carbon. Environ Int. 2014;62:64–71. https://doi.org/10.1016/j.envint.2013.10.003 . (PMID: 10.1016/j.envint.2013.10.00324161448)
Fillekes MP, Röcke C, Katana M, Weibel R. Self-reported versus GPS-derived indicators of daily mobility in a sample of healthy older adults. Soc Sci Med. 2019;220:193–202. https://doi.org/10.1016/j.socscimed.2018.11.010 . (PMID: 10.1016/j.socscimed.2018.11.01030453111)
Duncan MJ, Badland HM, Mummery WK. Applying GPS to enhance understanding of transport-related physical activity. Am J Prev Med. 2007;33:51–3. (PMID: 10.1016/j.amepre.2007.02.042)
Dalton AM, Jones AP, Panter J, Ogilvie D. Are GIS-modelled routes a useful proxy for the actual routes followed by commuters? J Transp Health. 2014;2:219–29. https://doi.org/10.1016/j.jth.2014.10.001 . (PMID: 10.1016/j.jth.2014.10.001)
Davies G, Whyatt D. A least-cost approach to personal exposure reduction. Trans GIS. 2009;13:229–46. (PMID: 10.1111/j.1467-9671.2009.01150.x)
Pooley C, Whyatt D, Walker M, Davies G, Coulton P, Bamford W. Understanding the school journey: integrating data on travel and environment. Environ Plan A. 2010;42:948–65. (PMID: 10.1068/a41405)
Kestens Y, Thierry B, Shareck M, Steinmetz-Wood M, Chaix B. Integrating activity spaces in health research: Comparing the VERITAS activity space questionnaire with 7-day GPS tracking and prompted recall. Spat Spatiotemporal Epidemiol. 2018;25:1–9. https://doi.org/10.1016/j.sste.2017.12.003 . (PMID: 10.1016/j.sste.2017.12.00329751887)
Bringolf-Isler B, Grize L, Mäder U, Ruch N, Sennhauser FH, Braun-Fahrländer C. Personal and environmental factors associated with active commuting to school in Switzerland. Prev Med. 2008;46:67–73. (PMID: 10.1016/j.ypmed.2007.06.015)
Jansen M, Ettema D, Pierik F, Dijst M. Sports facilities, shopping centers or homes: What locations are important for adults’ physical activity? A cross-sectional study. Int J Environ Res Public Health. 2016;13:1–19.
Ulfarsson GF, Shankar VN. Children’s travel to school: Discrete choice modeling of correlated motorized and nonmotorized transportation modes using covariance heterogeneity. Environ Plan B Plan Des. 2008;35:195–206. (PMID: 10.1068/b3360)
Freidl GS, Spruijt IT, Borlée F, Smit LAM, Van Gageldonk-Lafeber AB, Heederik DJJ, et al. Livestock-associated risk factors for pneumonia in an area of intensive animal farming in the Netherlands. PLoS ONE. 2017;12:1–16. (PMID: 10.1371/journal.pone.0174796)
Borlée F, Yzermans CJ, van Dijk CE, Heederik D, Smit LAM. Increased respiratory symptoms in COPD patients living in the vicinity of livestock farms. Eur Respir J. 2015;46:1605–14. https://doi.org/10.1183/13993003.00265-2015 . (PMID: 10.1183/13993003.00265-201526250492)
Klous G, Smit LAM, Freidl GS, Borlée F, van der Hoek W, IJzermans CJ, et al. Pneumonia risk of people living close to goat and poultry farms—taking GPS derived mobility patterns into account. Environ Int. 2018;115:150–60.
Landelijk Informatiesysteem van Arbeidsplaatsen, https://lisa.nl/home .
Esri/near_analysis. http://pro.arcgis.com/en/pro-app/tool-reference/analysis/near.htm .
The Netherlands’ Cadastre, Land Registry and Mapping Agency, https://www.kadaster.nl/ .
Esri/network_analysis. http://pro.arcgis.com/en/pro-app/tool-reference/network-analyst/an-overview-of-the-network-analyst-toolbox.htm .
Esri/find-closest-facilities. http://pro.arcgis.com/en/pro-app/tool-reference/ready-to-use/find-closest-facilities.htm .
Schaap N, Harms L, Kansen M, Wust H. Cycling and walking: the grease in our mobility chain. Ministry of Infrastructure and the Environment, The Hague, 2016. http://english.kimnet.nl .
Huss A, Beekhuizen J, Kromhout H, Vermeulen R. Using GPS-derived speed patterns for recognition of transport modes in adults. Int J Health Geogr. 2014;13:40. https://doi.org/10.1186/1476-072X-13-40. (PMID: 10.1186/1476-072X-13-40.253041714320483)
Statistics Netherlands (CBS), https://www.cbs.nl/nl-nl/achtergrond/2016/20/beroepsbevolking .
Scheiner J, Holz-Rau C. Travel mode choice: affected by objective or subjective determinants? Transportation. 2007;34:487–511. https://doi.org/10.1007/s11116-007-9112-1. (PMID: 10.1007/s11116-007-9112-1.)
Axhausen K, Zimmermann A, Schönfelder S, Rindsfüser G. Observing the rhythms of daily life: a six-week travel diary Elektronische Daten. Transportation. 2002;29:95–124. http://en.scientificcommons.org/831369 . (PMID: 10.1023/A:1014247822322)
Flamm M, Kaufmann V. The concept of network of usual places as a tool for analyzing human activity spaces: an exploration based on the mobidrive large scale travel diary data set. In: Proceedings of the 11th World Conference on Transport Research. 2007. http://trid.trb.org/view.aspx?id=878244 .
Vanwolleghem G, Schipperijn J, Gheysen F, Cardon G, De Bourdeaudhuij I, Van Dyck D. Children’s GPS-determined versus self-reported transport in leisure time and associations with parental perceptions of the neighborhood environment. Int J Health Geogr. 2016;15:1–12. (PMID: 10.1186/s12942-015-0031-7)
Vlakveld WP, Twisk D, Christoph M, Boele M, Sikkema R, Remy R, et al. Speed choice and mental workload of elderly cyclists on e-bikes in simple and complex traffic situations: a field experiment. Accid Anal Prev. 2015;74:97–106. https://doi.org/10.1016/j.aap.2014.10.018 . (PMID: 10.1016/j.aap.2014.10.01825463949)
Zuurbier M, Hoek G, Hazel P Van Den, Brunekreef B. Minute ventilation of cyclists, car and bus passengers: an experimental study. Environ Health. 2009;8:1–10. (PMID: 10.1186/1476-069X-8-48)
Chaix B, Méline J, Duncan S, Merrien C, Karusisi N, Perchoux C, et al. GPS tracking in neighborhood and health studies: a step forward for environmental exposure assessment, a step backward for causal inference? Health Place. 2013;21:46–51. (PMID: 10.1016/j.healthplace.2013.01.003)
Su JG, Jerrett M, Meng YY, Pickett M, Ritz B. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci Total Environ. 2015;506–507:518–26. https://doi.org/10.1016/j.scitotenv.2014.11.022 . (PMID: 10.1016/j.scitotenv.2014.11.02225437768)
Contributed Indexing:
Keywords: Active mobility; Assessment; Biking; Exposure; GPS validation; Mobility estimation method; Walking
Substance Nomenclature:
0 (Air Pollutants)
Entry Date(s):
Date Created: 20191128 Date Completed: 20201223 Latest Revision: 20210113
Update Code:
20240104
DOI:
10.1038/s41370-019-0194-6
PMID:
31772295
Czasopismo naukowe
Background/aim: Active mobility may play a relevant role in the assessment of environmental exposures (e.g. traffic-related air pollution, livestock emissions), but data about actual mobility patterns are work intensive to collect, especially in large study populations, therefore estimation methods for active mobility may be relevant for exposure assessment in different types of studies. We previously collected mobility patterns in a group of 941 participants in a rural setting in the Netherlands, using week-long GPS tracking. We had information regarding personal characteristics, self-reported data regarding weekly mobility patterns and spatial characteristics. The goal of this study was to develop versatile estimates of active mobility, test their accuracy using GPS measurements and explore the implications for exposure assessment studies.
Methods: We estimated hours/week spent on active mobility based on personal characteristics (e.g. age, sex, pre-existing conditions), self-reported data (e.g. hours spent commuting per bike) or spatial predictors such as home and work address. Estimated hours/week spent on active mobility were compared with GPS measured hours/week, using linear regression and kappa statistics.
Results: Estimated and measured hours/week spent on active mobility had low correspondence, even the best predicting estimation method based on self-reported data, resulted in a R 2 of 0.09 and Cohen's kappa of 0.07. A visual check indicated that, although predicted routes to work appeared to match GPS measured tracks, only a small proportion of active mobility was captured in this way, thus resulting in a low validity of overall predicted active mobility.
Conclusions: We were unable to develop a method that could accurately estimate active mobility, the best performing method was based on detailed self-reported information but still resulted in low correspondence. For future studies aiming to evaluate the contribution of home-work traffic to exposure, applying spatial predictors may be appropriate. Measurements still represent the best possible tool to evaluate mobility patterns.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies