Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Activity of native tick kinins and peptidomimetics on the cognate target G protein-coupled receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae).

Tytuł :
Activity of native tick kinins and peptidomimetics on the cognate target G protein-coupled receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae).
Autorzy :
Xiong C; Department of Entomology, Texas A&M University, College Station, TX, USA.
Kaczmarek K; Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland.; Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA.
Zabrocki J; Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland.; Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA.
Nachman RJ; Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA.
Pietrantonio PV; Department of Entomology, Texas A&M University, College Station, TX, USA.
Pokaż więcej
Źródło :
Pest management science [Pest Manag Sci] 2020 Oct; Vol. 76 (10), pp. 3423-3431. Date of Electronic Publication: 2020 Jan 08.
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
MeSH Terms :
Animals ; Cattle ; Female ; Kinins ; Neuropeptides ; Peptidomimetics
References :
Pérez de León AA, Teel PD, Auclair AN, Messenger MT, Guerrero FD, Schuster G et al., Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front Physiol 3:1-17 (2012).
Guerrero FD, Lovis L and Martins JR, Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 21:1-6 (2012).
Pohl PC, Klafke GM, Júnior JR, Martins JR, da Silva Vaz I and Masuda A, ABC transporters as a multidrug detoxification mechanism in Rhipicephalus (Boophilus) microplus. Parasitol Res 111:2345-2351 (2012).
Holman G, Cook B and Nachman R, Isolation, primary structure and synthesis of two neuropeptides from Leucophaea maderae: members of a new family of cephalomyotropins. Comp Biochem Physiol C: Comp Pharmacol 84:205-211 (1986).
Coast G, The endocrine control of salt balance in insects. Gen Comp Endocrinol 152:332-338 (2007).
Coast GM, Orchard I, Phillips JE and Schooley DA, Insect diuretic and antidiuretic hormones. Adv Insect Physiol 29:279-409 (2002).
De Loof A, Ecdysteroids, juvenile hormone and insect neuropeptides: recent successes and remaining major challenges. Gen Comp Endocrinol 155:3-13 (2008).
Gäde G, Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu Rev Entomol 49:93-113 (2004).
Nässel DR, Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1-84 (2002).
Holman GM, Nachman R and Wright M, Insect neuropeptides. Annu Rev Entomol 35:201-217 (1990).
Coast GM, Holman GM and Nachman RJ, The diuretic activity of a series of cephalomyotropic neuropeptides, the achetakinins, on isolated Malpighian tubules of the house cricket, Acheta domesticus. J Insect Physiol 36:481-488 (1990).
Nachman RJ, Strey A, Isaac E, Pryor N, Lopez JD, Deng J-G et al., Enhanced in vivo activity of peptidase-resistant analogs of the insect kinin neuropeptide family. Peptides 23:735-745 (2002).
Harshini S, Manchu V, Sunitha V, Sreekumar S and Nachman R, In vitro release of amylase by culekinins in two insects: Opsinia arenosella (Lepidoptera) and Rhynchophorus ferrugineus (Coleoptera). Trends Life Sci 17:61-64 (2003).
Seinsche A, Dyker H, Lösel P, Backhaus D and Scherkenbeck J, Effect of helicokinins and ACE inhibitors on water balance and development of Heliothis virescens larvae. J Insect Physiol 46:1423-1431 (2000).
Kwon H, Agha MA, Smith RC, Nachman RJ, Marion-Poll F and Pietrantonio PV, Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron. Proc Natl Acad Sci USA 113:6880-6885 (2016).
Kim D-H, Kim Y-J and Adams ME, Endocrine regulation of airway clearance in Drosophila. Proc Natl Acad Sci USA 115:1535-1540 (2018).
Kersch CN and Pietrantonio PV, Mosquito Aedes aegypti (L.) leucokinin receptor is critical for in vivo fluid excretion post blood feeding. FEBS Lett 585:3507-3512 (2011).
Pietrantonio PV, Jagge C, Taneja-Bageshwar S, Nachman RJ and Barhoumi R, The mosquito Aedes aegypti (L.) leucokinin receptor is a multiligand receptor for the three Aedes kinins. Insect Mol Biol 14:55-67 (2005).
Lu HL, Kersch C and Pietrantonio PV, The kinin receptor is expressed in the Malpighian tubule stellate cells in the mosquito Aedes aegypti (L.): a new model needed to explain ion transport? Insect Biochem Mol Biol 41:135-140 (2011).
Holman GM, Nachman RJ and Coast GM, Isolation, characterization and biological activity of a diuretic myokinin neuropeptide from the housefly, Musca domestica. Peptides 20:1-10 (1999).
Torfs P, Nieto J, Veelaert D, Boon D, Water G, Waelkens E et al., The kinin peptide family in invertebrates. Ann N Y Acad Sci 897:361-373 (1999).
Nachman RJ and Holman GM, Myotropic insect neuropeptide families from the cockroach Leucophaea maderae: structure-activity relationships, in Insect Neuropeptides: Chemistry, Biology, and Action, ed. by Menn JJ and Masler EP. American Chemical Society, Washington, DC, pp. 194-214 (1991).
Nachman RJ, Coast GM, Douat C, Fehrentz J-A, Kaczmarek K, Zabrocki J et al., A C-terminal aldehyde insect kinin analog enhances inhibition of weight gain and induces significant mortality in Helicoverpa zea larvae. Peptides 24:1615-1621 (2003).
Holmes SP, Barhoumi R, Nachman RJ and Pietrantonio PV, Functional analysis of a G protein-coupled receptor from the southern cattle tick Boophilus microplus (Acari: Ixodidae) identifies it as the first arthropod myokinin receptor. Insect Mol Biol 12:27-38 (2003).
Taneja-Bageshwar S, Strey A, Zubrzak P, Pietrantonio PV and Nachman RJ, Comparative structure-activity analysis of insect kinin core analogs on recombinant kinin receptors from Southern cattle tick Boophilus microplus (Acari: Ixodidae) and mosquito Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol 62:128-140 (2006).
Nachman RJ, Coast GM, Holman GM and Beier RC, Diuretic activity of C-terminal group analogues of the insect kinins in Acheta domesticus. Peptides 16:809-813 (1995).
Taneja-Bageshwar S, Strey A, Isaac RE, Coast GM, Zubrzak P, Pietrantonio PV et al., Biostable agonists that match or exceed activity of native insect kinins on recombinant arthropod GPCRs. Gen Comp Endocrinol 162:122-128 (2009).
Roberts VA, Nachman RJ, Coast GM, Hariharan M, Chung JS, Holman GM et al., Consensus chemistry and R-turn conformation of the active core of the insect kinin neuropeptide family. Chem Biol 4:105-117 (1997).
Pietrantonio PV, Xiong C, Nachman RJ and Shen Y, G protein-coupled receptors in arthropod vectors: omics and pharmacological approaches to elucidate ligand-receptor interactions and novel organismal functions. Curr Opin Insect Sci 29:12-20 (2018).
Xiong C, Kaczmarek K, Zabrocki J, Pietrantonio PV and Nachman RJ, Evaluation of Aib and PEG-polymer insect kinin analogs on mosquito and tick GPCRs identifies potent new pest management tools with potentially enhanced biostability and bioavailability. Gen Comp Endocrinol 278:58-67 (2019).
Brock CM, Temeyer KB, Tidwell J, Yang Y, Blandon MA, Carreón-Camacho D et al., The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. Int J Parasitol 49:287-299 (2019).
Cornell MJ, Williams TA, Lamango NS, Coates D, Corvol P, Soubrier F et al., Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J Biol Chem 270:13613-13619 (1995).
Gäde G and Goldsworthy GJ, Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Manag Sci 59:1063-1075 (2003).
Lamango NS, Sajid M and Isaac RE, The endopeptidase activity and the activation by Cl-of angiotensin-converting enzyme is evolutionarily conserved: purification and properties of an an angiotensin-converting enzyme from the housefly, Musca domestica. Biochem J 314:639-646 (1996).
Nachman RJ, Tilley JW, Hayes TK, Holman GM and Beier RC, Pseudopeptide mimetic analogs of insect neuropeptides, in Natural and Engineered Pest Management Agents, ed. by Hedin P, Menn JJ and Hollingworth RM. American Chemical Society, Washington DC, pp. 210-229 (1994).
Nachman RJ, Isaac RE, Coast GM and Holman GM, Aib-containing analogues of the insect Kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic activity. Peptides 18:53-57 (1997).
Nachman RJ, Isaac RE, Coast GM, Roberts VA, Lange AB, Orchard I et al., Active conformation and mimetic analog development for the pyrokinin-PBAN-diapause-pupariation and Myosuppressin insect neuropeptide families, in Phytochemicals for Pest Control, ed. by Hedin PA, Hollingworth RM, Masler EP, Miyamoto J and Thompson DG. American Chemical Society, Washington, DC, pp. 277-291 (1997).
Veenstra JA, Mono-and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49-63 (2000).
Xiong C, Baker D and Pietrantonio PV, The cattle fever tick, Rhipicephalus microplus, as a model for forward pharmacology to elucidate kinin GPCR function in the Acari. Front Physiol 10 (2019). Article ID 1008.
Nachman RJ, Kaczmarek K, Williams HJ, Coast GM and Zabrocki J, An active insect kinin analog with 4-aminopyroglutamate, a novel cis-peptide bond, type VI β-turn motif. Biopolymers 75:412-419 (2004).
Holmes SP, He H, Chen AC, Ivie GW and Pietrantonio PV, Cloning and transcriptional expression of a leucokinin-like peptide receptor from the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol 9:457-465 (2000).
Lu HL, Kersch CN, Taneja-Bageshwar S and Pietrantonio PV, A calcium bioluminescence assay for functional analysis of mosquito (Aedes aegypti) and tick (Rhipicephalus microplus) G protein-coupled receptors. J Vis Exp 50:e2732 (2011). Available:
Katoh K and Standley DM, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Bio Evol 30:772-780 (2013).
Coast GM and Schooley DA, Toward a consensus nomenclature for insect neuropeptides and peptide hormones. Peptides 32:620-631 (2011).
Wu F, Song G, de Graaf C and Stevens RC, Structure and function of peptide-binding G protein-coupled receptors. J Mol Biol 429:2726-2745 (2017).
Lange AB, Nachman RJ, Kaczmarek K and Zabrocki J, Biostable insect kinin analogs reduce blood meal and disrupt ecdysis in the blood-gorging Chagas' disease vector, Rhodnius prolixus. Peptides 80:108-113 (2016).
Smagghe G, Mahdian K, Zubrzak P and Nachman RJ, Antifeedant activity and high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae) induced by biostable insect kinin analogs. Peptides 31:498-505 (2010).
Alford L, Marley R, Dornan A, Pierre JS, Dow JA, Nachman RJ et al., Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. Pest Manag Sci 75:1750-1759 (2019).
Schepel SA, Fox AJ, Miyauchi JT, Sou T, Yang JD, Lau K et al., The single kinin receptor signals to separate and independent physiological pathways in Malpighian tubules of the yellow fever mosquito. Am J Physiol Regul Integr Comp Physiol 299:R612-R622 (2010).
Yeoh JGC, Pandit AA, Zandawala M, Nässel DR, Davies S-A and Dow JAT, DINeR: database for insect neuropeptide research. Insect Biochem Mol Biol 86:9-19 (2017).
Derst C, Dircksen H, Meusemann K, Zhou X, Liu S and Predel R, Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 16:51 (2016).
Nachman RJ, Kaczmarek K, Zabrocki J and Coast GM, Active diuretic peptidomimetic insect kinin analogs that contain β-turn mimetic motif 4-aminopyroglutamate and lack native peptide bonds. Peptides 34:262-265 (2012).
Zhang C, Qu Y, Wu X, Song D, Ling Y and Yang X, Design, synthesis and aphicidal activity of N-terminal modified insect kinin analogs. Peptides 68:233-238 (2015).
Grant Information :
2016-67015-24918 National Institute of Food and Agriculture; TEX0-2-9206 National Institute of Food and Agriculture; Insect Vector Diseases Grant Program Texas A&M AgriLife Research; 6202-22000-029-00D U.S. Department of Defense
Contributed Indexing :
Keywords: Aib analogs; GPCR; high-throughput calcium fluorescence assay; leucokinin receptor; structure-activity relationship (SAR); synthetic neuropeptides
Substance Nomenclature :
0 (Kinins)
0 (Neuropeptides)
0 (Peptidomimetics)
Entry Date(s) :
Date Created: 20191204 Date Completed: 20201016 Latest Revision: 20201016
Update Code :
Czasopismo naukowe
Background: Kinins are multifunctional neuropeptides that regulate key insect physiological processes such as diuresis, feeding, and ecdysis. However, the physiological roles of kinins in ticks are unclear. Furthermore, ticks have an expanded number of kinin paracopies in the kinin gene. Silencing the kinin receptor (KR) in females of Rhipicephalus microplus reduces reproductive fitness. Thus, it appears the kinin signaling system is important for tick physiology and its disruption may have potential for tick control.
Results: We determined the activities of endogenous kinins on the KR, a G protein-coupled receptor, and identified potent peptidomimetics. Fourteen predicted R. microplus kinins (Rhimi-K), and 11 kinin analogs containing aminoisobutyric acid (Aib) were tested. The latter incorporated tick kinin sequences and/or were modified for enhanced resistance to arthropod peptidases. A high-throughput screen using a calcium fluorescence assay in 384-well plates was performed. All tested kinins and Aib analogs were full agonists. The most potent kinin and two kinin analogs were equipotent. Analogs 2414 ([Aib]FS[Aib]WGa) and 2412 ([Aib]FG[Aib]WGa) were the most active with EC 50 values of 0.9 and 1.1 nM, respectively, matching the EC 50 of the most potent tick kinin, Rhimi-K-14 (QDSFNPWGa) (EC 50  = 1 nM). The potent analog 2415 ([Aib]FR[Aib]WGa, EC 50  = 6.8 nM) includes both Aib molecules for resistance to peptidases and a positively charged residue, R, for enhanced water solubility and amphiphilic character.
Conclusion: These tick kinins and pseudopeptides expand the repertoire of reagents for tick physiology and toxicology towards finding novel targets for tick management. © 2019 Society of Chemical Industry.
(© 2019 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies