Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structural insight into bi-functional malonyl-CoA reductase.

Tytuł:
Structural insight into bi-functional malonyl-CoA reductase.
Autorzy:
Son HF; School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea.
Kim S; School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea.
Seo H; School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea.
Hong J; School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea.
Lee D; School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea.
Jin KS; Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea.
Park S; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
Kim KJ; School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea.
Źródło:
Environmental microbiology [Environ Microbiol] 2020 Feb; Vol. 22 (2), pp. 752-765. Date of Electronic Publication: 2019 Dec 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Science, 1999-
MeSH Terms:
Alphaproteobacteria/*enzymology
Malondialdehyde/*analogs & derivatives
Malonyl Coenzyme A/*metabolism
Oxidoreductases/*metabolism
Binding Sites/physiology ; Lactic Acid/analogs & derivatives ; Lactic Acid/metabolism ; Malondialdehyde/metabolism ; Phylogeny ; Protein Binding/physiology ; Protein Conformation
References:
Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213-221.
Alber, B., Olinger, M., Rieder, A., Kockelkorn, D., Jobst, B., Hugler, M., and Fuchs, G. (2006) Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188: 8551-8559.
Alber, B.E., and Fuchs, G. (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277: 12137-12143.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
Berg, I.A., Kockelkorn, D., Buckel, W., and Fuchs, G. (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318: 1782-1786.
Bernhardsgrutter, I., Vogeli, B., Wagner, T., Peter, D.M., Cortina, N.S., Kahnt, J., et al. (2018) The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nat Chem Biol 14: 1127-1132.
Cottrell, M.T., Mannino, A., and Kirchman, D.L. (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72: 557-564.
Demmer, U., Warkentin, E., Srivastava, A., Kockelkorn, D., Potter, M., Marx, A., et al. (2013) Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase. J Biol Chem 288: 6363-6370.
Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126-2132.
Ettema, T.J., and Andersson, S.G. (2008) Comment on "a 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea". Science 321: 342 author reply 342.
Fischer, H., Neto, M.D., Napolitano, H.B., Polikarpov, I., and Craievich, A.F. (2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr 43: 101-109.
Franke, D., and Svergun, D.I. (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42: 342-346.
Gong, F.Y., Zhu, H.W., Zhang, Y.P., and Li, Y. (2018) Biological carbon fixation: from natural to synthetic. J CO2 Util 28: 221-227.
Guinier, A., Fournet, G., and Yudowitch, K.L. (1955) Small-angle scattering of X-rays. Acta Crsytallogr 9: 839.
Hanada, S. (2016) Anoxygenic photosynthesis - a photochemical reaction that does not contribute to oxygen reproduction. Microbes Environ 31: 1-3.
Hugler, M., Menendez, C., Schagger, H., and Fuchs, G. (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. J Bacteriol 184: 2404-2410.
Hugler, M., and Sievert, S.M. (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci 3: 261-289.
Huson, D.H., and Scornavacca, C. (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61: 1061-1067.
Ji, R.Y., Ding, Y., Shi, T.Q., Lin, L., Huang, H., Gao, Z., and Ji, X.J. (2018) Metabolic engineering of yeast for the production of 3-hydroxypropionic acid. Front Microbiol 9: 2185.
Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34: 6003-6013.
Kim, K.S., Pelton, J.G., Inwood, W.B., Andersen, U., Kustu, S., and Wemmer, D.E. (2010) The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol 192: 4089-4102.
Kim, K.-W., Kim, J., Yun, Y.D., Ahn, H., Min, B., Kim, N.H., et al. (2017) Small-angle X-ray scattering beamline BL4C SAXS at Pohang light source II. Biodesign 5: 24-29.
Kozin, M.B., and Svergun, D.I. (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34: 33-41.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549.
Kumar, V., Ashok, S., and Park, S. (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31: 945-961.
Langer, G., Cohen, S.X., Lamzin, V.S., and Perrakis, A. (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3: 1171-1179.
Le, S.Q., and Gascuel, O. (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307-1320.
Liu, C., Wang, Q., Xian, M., Ding, Y., and Zhao, G. (2013) Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. PLoS One 8: e75554.
Liu, C.S., Ding, Y.M., Zhang, R.B., Liu, H.Z., Xian, M., and Zhao, G. (2016) Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab Eng 34: 104-111.
LoPachin, R.M., and Gavin, T. (2014) Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 27: 1081-1091.
Matthews, B.W. (1968) Solvent content of protein crystals. J Mol Biol 33: 491-497.
Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255.
Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-326.
Park, S.-Y., Ha, S.-C., and Kim, Y.-G. (2017) The protein crystallography beamlines at the pohang light source II. Biodesign 5: 30-34.
Rathnasingh, C., Raj, S.M., Lee, Y., Catherine, C., Ashoka, S., and Park, S. (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157: 633-640.
Rice, L.M., Earnest, T.N., and Brunger, A.T. (2000) Single-wavelength anomalous diffraction phasing revisited. Acta Crystallogr D Biol Crystallogr 56: 1413-1420.
Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N.S., and Erb, T.J. (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354: 900-904.
Semenyuk, A., and Svergun, D. (1991) GNOM-a program package for small-angle scattering data processing. J Appl Crystallogr 24: 537-540.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W.Z., et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7: 539.
Tabita, F.R. (2009) The hydroxypropionate pathway of CO2 fixation: fait accompli. Proc Natl Acad Sci U S A 106: 21015-21016.
Tang, K.H., Barry, K., Chertkov, O., Dalin, E., Han, C.S., Hauser, L.J., et al. (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12: 334.
Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66: 22-25.
Valdehuesa, K.N., Liu, H., Nisola, G.M., Chung, W.J., Lee, S.H., and Park, S.J. (2013) Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 97: 3309-3321.
Wang, Y., Sun, T., Gao, X., Shi, M., Wu, L., Chen, L., and Zhang, W. (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 34: 60-70.
Yoon, J.H., Kang, S.J., Lee, M.H., Oh, H.W., and Oh, T.K. (2006) Porphyrobacter dokdonensis sp. nov, isolated from sea water. Int J Syst Evol Microbiol 56: 1079-1083.
Zarzycki, J., Brecht, V., Muller, M., and Fuchs, G. (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci U S A 106: 21317-21322.
Grant Information:
NRF-2018H1A2A1061751 International NRF-2018-Global PhD Fellowship Program of the Korean Government; NRF-2016M3D3A1A01913269 International Ministry of Science and ICT; International National Research Foundation of Korea
Substance Nomenclature:
33X04XA5AT (Lactic Acid)
4Y8F71G49Q (Malondialdehyde)
524-14-1 (Malonyl Coenzyme A)
9K1T0U0R4C (malonic semialdehyde)
C4ZF6XLD2X (hydracrylic acid)
EC 1.- (Oxidoreductases)
EC 1.- (malonyl-Coa reductase)
SCR Organism:
Porphyrobacter dokdonensis
Entry Date(s):
Date Created: 20191210 Date Completed: 20200907 Latest Revision: 20200907
Update Code:
20240105
DOI:
10.1111/1462-2920.14885
PMID:
31814251
Czasopismo naukowe
The bi-functional malonyl-CoA reductase is a key enzyme of the 3-hydroxypropionate bi-cycle for bacterial CO 2 fixation, catalysing the reduction of malonyl-CoA to malonate semialdehyde and further reduction to 3-hydroxypropionate. Here, we report the crystal structure and the full-length architecture of malonyl-CoA reductase from Porphyrobacter dokdonensis. The malonyl-CoA reductase monomer of 1230 amino acids consists of four tandemly arranged short-chain dehydrogenases/reductases, with two catalytic and two non-catalytic short-chain dehydrogenases/reductases, and forms a homodimer through paring contact of two malonyl-CoA reductase monomers. The complex structures with its cofactors and substrates revealed that the malonyl-CoA substrate site is formed by the cooperation of two short-chain dehydrogenases/reductases and one novel extra domain, while only one catalytic short-chain dehydrogenase/reductase contributes to the formation of the malonic semialdehyde-binding site. The phylogenetic and structural analyses also suggest that the bacterial bi-functional malonyl-CoA has a structural origin that is completely different from the archaeal mono-functional malonyl-CoA and malonic semialdehyde reductase, and thereby constitute an efficient enzyme.
(© 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies