Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Tertiary treatment of coke plant effluent by indigenous material from an integrated steel plant: a sustainable approach.

Tytuł:
Tertiary treatment of coke plant effluent by indigenous material from an integrated steel plant: a sustainable approach.
Autorzy:
Das S; Environmental Research Group, Tata Steel R&D, Jamshedpur, 831001, India. .
Biswas P; Environmental Research Group, Tata Steel R&D, Jamshedpur, 831001, India.
Sarkar S; Environmental Research Group, Tata Steel R&D, Jamshedpur, 831001, India.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2020 Mar; Vol. 27 (7), pp. 7379-7387. Date of Electronic Publication: 2019 Dec 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Coke*/analysis
Water Pollutants, Chemical*/analysis
Waste Disposal, Fluid/*methods
Steel/chemistry ; Wastewater/analysis
References:
Ahmaruzzaman M, Sharma DK (2005) Adsorption of phenols from wastewater. J Coll Interface Sci 287:14–24. (PMID: 10.1016/j.jcis.2005.01.075)
Bhunia P, Chatterjee S, Rudra P, De S (2018) Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater. Sep Purif Technol 3:202–213. (PMID: 10.1016/j.seppur.2017.11.001)
Burmistrz P, Rozwadowski A, Burmistrz M, Karcz A (2014) Coke dust enhances coke plant wastewater treatment. Chemosphere 117:278–284. (PMID: 10.1016/j.chemosphere.2014.07.025)
Chen T, Huang X, Pan M, Jin S, Peng S, Fallgren PH (2009) Treatment of coking wastewater by using manganese and magnesium ores. J Hazard Mater 168:843–847. (PMID: 10.1016/j.jhazmat.2009.02.101)
Diez MA, Alvarez R, Barriocanal C (2002) Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int J Coal Geol 50:389–412. (PMID: 10.1016/S0166-5162(02)00123-4)
Errera MR, Milanez LF (2000) Thermodynamic analysis of a coke dry quenching unit. Energ Convers Manage 41:109–127. (PMID: 10.1016/S0196-8904(99)00090-4)
Ghose MK (2002) Complete physico-chemical treatment for coke plant effluents. Wat Res 36(5):1127–1134. (PMID: 10.1016/S0043-1354(01)00328-1)
Jiang W, Zhang W, Li B, Duan J, Lv Y, Liu W, Ying W (2011) Combined fenton oxidation and biological activated carbon process for recycling of coking plant effluent. J Hazard Mater 189:308–314. (PMID: 10.1016/j.jhazmat.2011.02.037)
Kim YM, Park D, Lee DS, Park JM (2007) Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer. J Hazard Mater 141:27–32. (PMID: 10.1016/j.jhazmat.2006.06.074)
Kim YM, Park D, Lee DS, Jung K, Park JM (2009) Sudden failure of biological nitrogen and carbon removal in the full-scale pre-denitrification process treating cokes wastewater. Biores Technol 100:4340–4347. (PMID: 10.1016/j.biortech.2009.04.014)
Lee DS, Jeon CO, Park JM, Chang KS (2002) Hybrid neural network modeling of a full scale industrial wastewater treatment process. Biotechnol Bioeng 78:670–682. (PMID: 10.1002/bit.10247)
Li L, Quinlivan PA, Knappe DRU (2002) Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085–2100. (PMID: 10.1016/S0008-6223(02)00069-6)
Mijangos F, Varona F, Villota N (2006) Changes in solution color during phenol oxidation by fenton reagent. Environ Sci Technol 17:5538–5543. (PMID: 10.1021/es060866q)
Mondal M, Mukherjee R, Sinha A, Sarkar S, De S (2019) Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry. J Water Process Eng 28:135–143. (PMID: 10.1016/j.jwpe.2019.01.013)
Pal P, Kumar R (2014) Treatment of coke wastewater: a critical review for developing sustainable management strategies. Sep Purif Rev 43(2):89–123. (PMID: 10.1080/15422119.2012.717161)
Park D, Kim YM, Lee DS, Park JM (2008) Chemical treatment for treating cyanides-containing effluent from biological cokes wastewater treatment process. Chem Eng J 143:141–146. (PMID: 10.1016/j.cej.2007.12.034)
Tomaszewska M, Mozia S, Morawski AW (2004) Removal of organic matter by coagulation enhanced with adsorption on PAC. Desalination 161:79–87. (PMID: 10.1016/S0011-9164(04)90042-2)
Woo SH, Jeon CO, Yua YS, Choi CH, Lee CS, Lee DS (2009) n-line estimation of key process variables based on kernel partial least squares in an industrial coke wastewater treatment plant. J Hazard Mater 161:538–544. (PMID: 10.1016/j.jhazmat.2008.04.004)
Zhanga M, Zhaob Q, Baib X, Ye Z (2010) Adsorption of organic pollutants from coking wastewater by activated coke. Coll Surfaces A Physicochem Eng Aspects 362:140–146. (PMID: 10.1016/j.colsurfa.2010.04.007)
Grant Information:
R&D Project Tata Steel
Contributed Indexing:
Keywords: Coke breeze; Coking process; Integrated steel plant
Substance Nomenclature:
0 (Coke)
0 (Waste Water)
0 (Water Pollutants, Chemical)
12597-69-2 (Steel)
Entry Date(s):
Date Created: 20191230 Date Completed: 20200526 Latest Revision: 20221207
Update Code:
20240104
DOI:
10.1007/s11356-019-07309-x
PMID:
31884536
Czasopismo naukowe
Biological process is an important and integral part of the coke plant wastewater treatment. Increasing pressure to meet more stringent discharge limits has led to adopt tertiary treatment for biologically treated coke plant (BTCP) effluent which contains intense colour along with many residual toxic pollutants like phenol, cyanide, thio-cyanate and COD. A sustainable process has been developed to remove these pollutants from BTCP effluent by using an indigenous material coke breeze which is abundantly available in integrated steel plant. Based on the developed process, a full-scale (200 m 3 /h) treatment plant has been designed for installation. The designed data has been obtained from a continuous demo plant treating 10 m 3 /h BTCP effluents. The utilised coke breeze is entirely used for sinter making. The process is highly efficient for the removal of colour above 95% and other residual pollutants like phenol, cyanide and COD to a safe level for discharge or reuse. This process neither incurs any additional chemical cost nor generates any secondary pollutants or products. Moreover, the developed process is very sustainable as it has some great advantages like less investment and low maintenance cost; therefore, the method is good in economics. The treated wastewater contains very less amount of chemical residues therefore meets the standards for reuse as industrial water resource. Hence, this developed technology has significant economic, social and environmental benefits. Graphical Abstract .

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies