Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Forest soil bacteria able to produce homo and copolymers of polyhydroxyalkanoates from several pure and waste carbon sources.

Tytuł:
Forest soil bacteria able to produce homo and copolymers of polyhydroxyalkanoates from several pure and waste carbon sources.
Autorzy:
Clifton-García B; Departamento de Ingeniería Química, Universidad de Guadalajara, Jalisco, México.
González-Reynoso O; Departamento de Ingeniería Química, Universidad de Guadalajara, Jalisco, México.
Robledo-Ortiz JR; Departamento de Madera, Celulosa y Papel Universidad de Guadalajara, Jalisco, México.
Villafaña-Rojas J; Departamento de Química, Universidad Autónoma de Guadalajara, Jalisco, México.
González-García Y; Departamento de Madera, Celulosa y Papel Universidad de Guadalajara, Jalisco, México.
Źródło:
Letters in applied microbiology [Lett Appl Microbiol] 2020 Apr; Vol. 70 (4), pp. 300-309. Date of Electronic Publication: 2020 Jan 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2023- : Oxford : Oxford University Press
Original Publication: Oxford, UK : Published for the Society for Applied Bacteriology by Blackwell Scientific Publications, [c1985-
MeSH Terms:
Soil Microbiology*
Biopolymers/*biosynthesis
Polyhydroxyalkanoates/*biosynthesis
Stenotrophomonas/*metabolism
Biopolymers/chemistry ; Carbon/metabolism ; Forests ; Glycerol/metabolism ; Industrial Waste/analysis ; Molecular Weight ; Polyhydroxyalkanoates/chemistry ; Stenotrophomonas/genetics ; Stenotrophomonas/isolation & purification ; Waste Products/analysis
References:
Alonso-Pernas, P., Arias-Cordero, E., Novoselov, A., Ebert, C., Rybak, J., Kaltenpoth, M., Westermann, M., Neugebauer, U. et al. (2017) Bacterial community and PHB-accumulating bacteria associated with the wall and specialized niches of the hindgut of the forest cockchafer (Melolontha hippocastani). Front Microbiol 8, 291.
Alves, L.P.S., Almeida, A.T., Cruz, L.M., Pedrosa, F., de Souza, E.M., Chubatsu, L.S., Müller-Santos, M. and Valdameri, G. (2017) A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry. Braz J Med Biol Res 50, e5492.
Berger, E., Ramsay, B.A., Ramsay, J.A., Chavarie, C. and Braunegg, G. (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 3, 227-232.
Cavalheiro, J.M., de Almeida, M.C.M., Grandfils, C. and Da Fonseca, M.M.R. (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44, 509-515.
Cavalheiro, J.M., Raposo, R.S., de Almeida, M.C.M., Teresa Cesário, M., Sevrin, C., Grandfils, C. and da Fonseca, M.M.R. (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hyd-roxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111, 391-397.
Chek, M.F., Kim, S.Y., Mori, T., Arsad, H., Samian, M.R., Sudesh, K. and Hakoshima, T. (2017) Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Sci Rep 7, 5312.
Gahlawat, G. and Soni, S.K. (2017) Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour Technol 243, 492-501.
Ibrahim, M.H.A., Lebbe, L., Willems, A. and Steinbüchel, A. (2016) Chelatococcus thermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study. AMB Express 6, 39.
Ienczak, J.L., Schmidell, W. and de Aragão, G.M.F. (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40, 275-286.
Insomphun, C., Kobayashi, S., Fujiki, T. and Numata, K. (2016) Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli. AMB Express 6, 29, https://doi.org/10.1186/s13568-016-0200-5.
Iqbal, B., Khan, N. and Jamil, N. (2016) Polyhydroxybutyrate production by Stenotrophomonas and Exiguobacterium using renewable carbon source. Annu Res Rev Biol 9, 1-9. https://doi.org/10.9734/ARRB/2016/23066.
Janarthanan, O.M., Laycock, B., Montano-Herrera, L., Lu, Y., Arcos-Hernandez, M.V., Werker, A. and Pratt, S. (2016) Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes. N Biotechnol 33, 61-72.
Jendrossek, D. and Pfeiffer, D. (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16, 2357-2373.
Jiang, G., Hill, J.D., Kowalczuk, M., Johnston, B., Adamus, G., Irorere, V. and Radecka, I. (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17, 1157.
Koller, M. and Marsalek, L. (2015) Potential of diverse prokaryotic organisms for glycerol-based polyhydroxyalkanoate production. Appl Food Biotechnol 2, 3-15.
Koller, M., Bona, R., Braunegg, G., Hermann, C., Horvat, P., Kroutil, M., Martinz, J., Neto, J. et al. (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromol 6, 561-565.
Koller, M., Maršálek, L., de Sousa Dias, M.M. and Braunegg, G. (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 37, 24-38.
Kumar, P., Ray, S., Patel, S.K., Lee, J.-K. and Kalia, V.C. (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78, 9-16.
Lee, W.H., Loo, C.Y., Nomura, C.T. and Sudesh, K. (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99, 6844-6851.
Linton, E., Rahman, A., Viamajala, S., Sims, R.C. and Miller, C.D. (2012) Polyhydroxyalkanoate quantification in organic wastes and pure cultures using a single-step extraction and 1H NMR analysis. Water Sci Technol 66, 1000-1006.
Lopes, M.S.G., Rocha, R.C.S., Zanotto, S.P., Gomez, J.G.C. and Silva, L.F. (2009) Screening of bacteria to produce polyhydroxyalkanoates from xylose. World J Microbiol Biotechnol 25, 1751-1756.
Mothes, G., Schnorpfeil, C. and Ackermann, J.-U. (2007) Production of PHB from crude glycerol. Eng Life Sci 7, 475-479.
Nascimento, V.M., Silva, L.F., Gomez, J.G.C. and Fonseca, G.G. (2016) Growth of Burkholderia sacchari LFM 101 cultivated in glucose, sucrose and glycerol at different temperatures. Sci Agric 73, 429-433.
Nikodinovic-Runic, J., Guzik, M., Kenny, S.T., Babu, R., Werker, A. and O’Connor, K.E. (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Adv Appl Microbiol 84, 139-200.
Nurbas, M. and Kutsal, T. (2004) Production of PHB and P (HB-co-HV) biopolymers by using Alcaligenes eutrophus. Iran Polym J 13, 45-52.
Obruca, S., Benesova, P., Marsalek, L. and Marova, I. (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29, 135-144.
Phukon, P., Phukan, M.M., Phukan, S. and Konwar, B.K. (2014) Polyhydroxyalkanoate production by indigenously isolated P. aeruginosa using glycerol by-product of KCDL biodiesel as an inexpensive carbon source. Ann Microbio 64, 1567-1574.
Porras, M.A., Vitale, C., Villar, M.A. and Cubitto, M.A. (2017) Bioconversion of glycerol to poly(HB-co-HV) copolymer in an inexpensive medium by a Bacillus megaterium strain isolated from marine sediments. J Environ Chem Eng 5, 1-9.
Proctor, M.H. and Wilson, P.W. (1959) Nitrogen fixation by Achromobacter spp. Arch Mikrobiol 32, 254-260.
Ramírez-Romero, G., Reyes-Velázquez, M. and Cruz-Guerrero, A. (2013) Study of Nejayote as culture medium for probiotics and production of bacteriocins. Rev Mex Ing Quím 12, 463-471.
Reinhardt, É., Ramos, P.L., Manfio, G.P., Barbosa, H.R., Pavan, C. and Moreira-Filho, C.A. (2008) Molecular characterization of nitrogen-fixing bacteria isolated from Brazilian agricultural plants at São Paulo state. Braz J Microbiol 39, 414-422.
Rivera-Briso, A.L. and Serrano-Aroca, Á. (2018) ‘Métodos de refuerzo mecánico del poli (3-hidroxibutirato-co-3-hidroxivalerato) para aplicaciones industriales avanzadas’, Nereis. Interdiscip Ibero-Am J Meth Model Simul 10, 79-94.
Sen, K.Y., Hussin, M.H. and Baidurah, S. (2019) ‘Biosynthesis of poly (3-hydroxybutyrate)(PHB) by Cupriavidus necator from various pretreated molasses as carbon source‘. Biocatal Agric Biotechnol 17, 51-59.
Shang, L., Fei, Q., Zhang, Y.H., Wang, X.Z., Fan, D.-D. and Chang, H.N. (2012) ‘Thermal properties and biodegradability studies of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)‘. J Polym Environ 20, 23-28.
Silva, L.F., Gomez, J.G.C., Oliveira, M.S. and Torres, B.B. (2000) Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. J Biotechnol 76, 165-174.
Singh, P. and Parmar, N. (2011) Isolation and characterization of two novel polyhydroxybutyrate (PHB)-producing bacteria. Afr J Biotechnol 10, 4907-4919.
Srivastava, A.K., Tripathi, A.D., Jha, A., Poonia, A. and Sharma, N. (2015) Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses). J Food Sci Technol 52, 3571-3578.
Sudha, M.L., Indumathi, K., Sumanth, M.S., Rajarathnam, S. and Shashirekha, M.N. (2015) Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. J Food Meas Charac 9, 382-388.
Torres-Tello, E.V., Robledo-Ortíz, J.R., González-García, Y., Pérez-Fonseca, A.A., Jasso-Gastinel, C.F. and Mendizábal, E. (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99, 117-125.
Tufail, S., Munir, S. and Jamil, N. (2017) Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz J Microbiol 48, 629-636.
Van-Thuoc, D., Quillaguamán, J., Mamo, G. and Mattiasson, B. (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104, 420-428.
Van-Thuoc, D., Huu-Phong, T., Minh-Khuong, D. and Hatti-Kaul, R. (2015) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175, 3120-3132.
Wani, S.J., Shaikh, S.S., Tabassum, B., Thakur, R., Gulati, A. and Sayyed, R.Z. (2016) ‘Stenotrophomonas sp. RZS 7, a novel PHB degrader isolated from plastic contaminated soil in Shahada, Maharashtra, Western India’. 3 Biotech 6, 179.
Zhu, C., Chiu, S., Nakas, J.P. and Nomura, C.T. (2013) Bioplastics from waste glycerol derived from biodiesel industry. J Appl Polym Sci 130, 1-13.
Grant Information:
8092-2019 Consejo Estatal de Ciencia y Tecnología, Gobierno del estado de JALISCO; 256506 Consejo Nacional de Ciencia y Tecnologia (Mexico)
Contributed Indexing:
Keywords: Achromobacter; Stenotrophomonas; biopolyester; polyhydroxyalkanoates; wastes
Substance Nomenclature:
0 (Biopolymers)
0 (Industrial Waste)
0 (Polyhydroxyalkanoates)
0 (Waste Products)
7440-44-0 (Carbon)
PDC6A3C0OX (Glycerol)
SCR Organism:
Stenotrophomonas rhizophila
Entry Date(s):
Date Created: 20200101 Date Completed: 20200615 Latest Revision: 20200615
Update Code:
20240104
DOI:
10.1111/lam.13272
PMID:
31891417
Czasopismo naukowe
Two bacterial strains able to produce polyhydroxyalkanoates (PHAs) from a wide variety of pure carbon sources (dextrose, xylose, sucrose, lactose and glycerol) were isolated from forest soils and identified as Achromobacter mucicolens and Stenotrophomonas rhizophila. Achromobacter mucicolens also produced poly(3-hydroxybutyrate) (PHB) from different wastes (cheese whey, molasses, agave bagasse hydrolysate, nejayote and mango waste pulp). Stenotrophomonas rhizophila, produced the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV) from glycerol (7·7 mol% of HV), and from sucrose with addition of propionic or valeric acid (4·5 and 25 mol% of HV, respectively). The copolymers presented a lower melting point (145, 156 and 127°C) and crystallinity (23, 26 and 16%) than PHB. The maximum biopolymer accumulation (PHB) for each strain growing in pure carbon source was as follows: 31·3 g per 100 g dry cell weight (DCW) for A. mucicolens from xylose; and 13·7 g per 100 g DCW for S. rhizophila from sucrose. Regarding the waste carbon sources, the highest PHB accumulation was obtained from agave bagasse hydrolysate (20·4 g per 100 g DCW) by A. mucicolens. The molecular weights of the biopolymers obtained ranged from 200 to 741 kDa. SIGNIFICANCE AND IMPACT OF THE STUDY: The economic cost of the carbon source for the culture of polyhydroxyalkanoates (PHAs)-producing microorganisms is one of the main process limitations. Therefore, it is vital to find versatile microorganisms able to grow and to accumulate homo and copolymers of PHAs from low-cost substrates. In this research, we report two bacterial strains that produce poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or both from at least five pure and five waste carbon sources. These results, by such bacterial strains have not been reported, especially the production of copolymer from glycerol without addition of precursors by Stenotrophomonas rhizophila and the production of PHB from xylose and agave bagasse hydrolysate by Achromobacter mucicolens.
(© 2019 The Society for Applied Microbiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies