Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Simultaneous tracers and a unified model of positional and mass isotopomers for quantification of metabolic flux in liver.

Tytuł :
Simultaneous tracers and a unified model of positional and mass isotopomers for quantification of metabolic flux in liver.
Autorzy :
Deja S; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Fu X; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Fletcher JA; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Kucejova B; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Browning JD; Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Young JD; Department of Chemical and Biomolecular Engineering, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA. Electronic address: .
Burgess SC; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. Electronic address: .
Pokaż więcej
Źródło :
Metabolic engineering [Metab Eng] 2020 May; Vol. 59, pp. 1-14. Date of Electronic Publication: 2019 Dec 28.
Typ publikacji :
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Original Publication: Brugge, Belgium ; Orlando, FL : Academic Press, c1999-
MeSH Terms :
Citric Acid Cycle*
Gluconeogenesis*
Models, Biological*
Pentose Phosphate Pathway*
Liver/*metabolism
Animals ; Carbon Isotopes/analysis ; Carbon Isotopes/chemistry ; Carbon Isotopes/pharmacology ; Male ; Mice ; Nuclear Magnetic Resonance, Biomolecular
References :
Lancet. 1986 Feb 8;1(8476):307-10. (PMID: 2868172)
Metab Eng. 2013 Nov;20:49-55. (PMID: 24021936)
Am J Physiol Endocrinol Metab. 2015 Jul 15;309(2):E191-203. (PMID: 25991647)
Am J Physiol. 1992 Jun;262(6 Pt 1):E968-75. (PMID: 1616030)
Anal Biochem. 2004 Apr 15;327(2):149-55. (PMID: 15051530)
Anal Biochem. 2000 Jan 1;277(1):121-6. (PMID: 10610696)
J Biol Chem. 1991 Apr 15;266(11):6975-84. (PMID: 2016309)
Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E848-56. (PMID: 11551863)
Am J Physiol. 1993 Oct;265(4 Pt 1):E636-47. (PMID: 8238339)
Am J Physiol. 1998 Nov;275(5):E843-52. (PMID: 9815005)
Metab Eng. 2004 Jan;6(1):12-24. (PMID: 14734252)
Anal Biochem. 2003 Jul 15;318(2):321-4. (PMID: 12814639)
J Lipid Res. 2014 Dec;55(12):2541-53. (PMID: 25271296)
J Clin Invest. 1996 Jul 15;98(2):378-85. (PMID: 8755648)
J Clin Chem Clin Biochem. 1983 Nov;21(11):709-20. (PMID: 6655447)
Anal Chem. 2019 May 7;91(9):5881-5887. (PMID: 30938977)
J Biol Chem. 2004 Nov 19;279(47):48941-9. (PMID: 15347677)
Proc Nutr Soc. 1999 Nov;58(4):963-72. (PMID: 10817164)
J Lipid Res. 2012 Jun;53(6):1080-92. (PMID: 22493093)
Metab Eng. 2013 Mar;16:21-32. (PMID: 23246523)
Anal Chem. 2012 May 15;84(10):4628-32. (PMID: 22510303)
Metab Eng. 2019 Dec;56:69-76. (PMID: 31473320)
Biochemistry. 1976 Dec 14;15(25):5617-20. (PMID: 999836)
Eur J Biochem. 1974 Sep 1;47(2):383-8. (PMID: 4413584)
Curr Opin Biotechnol. 2015 Aug;34:189-201. (PMID: 25731751)
J Vis Exp. 2015 Aug 27;(102):e52982. (PMID: 26382148)
Metab Eng. 2007 Jan;9(1):68-86. (PMID: 17088092)
Metab Eng. 2016 Nov;38:10-18. (PMID: 27267409)
FEBS Lett. 1997 Jul 21;412(1):131-7. (PMID: 9257705)
Cell Metab. 2019 Jun 4;29(6):1291-1305.e8. (PMID: 31006591)
Am J Physiol Endocrinol Metab. 2012 Dec 1;303(11):E1304-12. (PMID: 23032685)
Bioinformatics. 2014 May 1;30(9):1333-5. (PMID: 24413674)
Cell Metab. 2017 Aug 1;26(2):394-406.e6. (PMID: 28768177)
Annu Rev Nutr. 1997;17:559-96. (PMID: 9240940)
J Clin Invest. 1995 Jan;95(1):172-8. (PMID: 7814612)
Metab Eng. 2004 Jan;6(1):44-58. (PMID: 14734255)
Exp Mol Med. 2018 Apr 16;50(4):19. (PMID: 29657327)
J Biol Chem. 1994 Nov 4;269(44):27179-82. (PMID: 7961626)
Magn Reson Med. 2005 Jun;53(6):1479-83. (PMID: 15906303)
Anal Chem. 2011 Apr 15;83(8):3211-6. (PMID: 21413777)
Magn Reson Med. 2001 Jan;45(1):156-8. (PMID: 11146497)
Biochem Med (Zagreb). 2015 Jun 05;25(2):141-51. (PMID: 26110027)
Am J Physiol. 1999 Oct;277(4):E717-23. (PMID: 10516132)
Anal Biochem. 2001 Oct 15;297(2):195-7. (PMID: 11673889)
Biotechnol Prog. 2000 Jul-Aug;16(4):642-9. (PMID: 10933840)
Am J Physiol Endocrinol Metab. 2015 Oct 15;309(8):E727-35. (PMID: 26330343)
Grant Information :
R01 DK078184 United States DK NIDDK NIH HHS; P41 EB015908 United States EB NIBIB NIH HHS; R01 DK106348 United States DK NIDDK NIH HHS; P30 DK058404 United States DK NIDDK NIH HHS; R56 DK078184 United States DK NIDDK NIH HHS
Substance Nomenclature :
0 (Carbon Isotopes)
Entry Date(s) :
Date Created: 20200101 Date Completed: 20210127 Latest Revision: 20210502
Update Code :
20210506
PubMed Central ID :
PMC7108978
DOI :
10.1016/j.ymben.2019.12.005
PMID :
31891762
Czasopismo naukowe
Computational models based on the metabolism of stable isotope tracers can yield valuable insight into the metabolic basis of disease. The complexity of these models is limited by the number of tracers and the ability to characterize tracer labeling in downstream metabolites. NMR spectroscopy is ideal for multiple tracer experiments since it precisely detects the position of tracer nuclei in molecules, but it lacks sensitivity for detecting low-concentration metabolites. GC-MS detects stable isotope mass enrichment in low-concentration metabolites, but lacks nuclei and positional specificity. We performed liver perfusions and in vivo infusions of 2 H and 13 C tracers, yielding complex glucose isotopomers that were assigned by NMR and fit to a newly developed metabolic model. Fluxes regressed from 2 H and 13 C NMR positional isotopomer enrichments served to validate GC-MS-based flux estimates obtained from the same experimental samples. NMR-derived fluxes were largely recapitulated by modeling the mass isotopomer distributions of six glucose fragment ions measured by GC-MS. Modest differences related to limited fragmentation coverage of glucose C1-C3 were identified, but fluxes such as gluconeogenesis, glycogenolysis, cataplerosis and TCA cycle flux were tightly correlated between the methods. Most importantly, modeling of GC-MS data could assign fluxes in primary mouse hepatocytes, an experiment that is impractical by 2 H or 13 C NMR.
(Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies