Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

SAMHD1-deficient fibroblasts from Aicardi-Goutières Syndrome patients can escape senescence and accumulate mutations.

Tytuł:
SAMHD1-deficient fibroblasts from Aicardi-Goutières Syndrome patients can escape senescence and accumulate mutations.
Autorzy:
Franzolin E; Department of Biology, University of Padova, Padova, Italy.
Coletta S; Department of Biology, University of Padova, Padova, Italy.
Ferraro P; Department of Biology, University of Padova, Padova, Italy.
Pontarin G; Department of Biology, University of Padova, Padova, Italy.
D'Aronco G; Department of Biology, University of Padova, Padova, Italy.
Stevanoni M; Department of Biology, University of Padova, Padova, Italy.
Palumbo E; Department of Molecular Medicine, University of Padova, Padova, Italy.
Cagnin S; Department of Biology, University of Padova, Padova, Italy.; CRIBI Biotechnology Center, University of Padova, Padova, Italy.; CIR-Myo Myology Center, University of Padova, Padova, Italy.
Bertoldi L; Department of Biology, University of Padova, Padova, Italy.
Feltrin E; Department of Biology, University of Padova, Padova, Italy.
Valle G; Department of Biology, University of Padova, Padova, Italy.
Russo A; Department of Molecular Medicine, University of Padova, Padova, Italy.
Bianchi V; Department of Biology, University of Padova, Padova, Italy.
Rampazzo C; Department of Biology, University of Padova, Padova, Italy.
Źródło:
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2020 Jan; Vol. 34 (1), pp. 631-647. Date of Electronic Publication: 2019 Nov 26.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
MeSH Terms:
Autoimmune Diseases of the Nervous System/*genetics
Fibroblasts/*metabolism
Mutation/*genetics
Nervous System Malformations/*genetics
SAM Domain and HD Domain-Containing Protein 1/*deficiency
DNA Damage/genetics ; DNA Replication/genetics ; Humans ; Monomeric GTP-Binding Proteins/metabolism ; SAM Domain and HD Domain-Containing Protein 1/genetics
References:
Meuth M, L'Heureux‐Huard N, Trudel M. Characterization of a mutator gene in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1979;76:6505‐6509.
Weinberg G, Ullman B, Martin DW Jr. Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc Natl Acad Sci U S A. 1981;78:2447‐2451.
Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349‐374.
Rampazzo C, Miazzi C, Franzolin E, et al. Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat Res Genet Toxicol Environ Mutagen. 2010;703:2‐10.
Pontarin G, Ferraro P, Hakansson P, Thelander L, Reichard P, Bianchi V. p53R2‐dependent ribonucleotide reduction provides deoxyribonucleotides in quiescent human fibroblasts in the absence of induced DNA damage. J Biol Chem. 2007;282:16820‐16828.
Ji X, Tang C, Zhao Q, Wang W, Xiong Y. Structural basis of cellular dNTP regulation by SAMHD1. Proc Natl Acad Sci U S A. 2014;111:E4305‐E4314.
Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 2006;75:681‐706.
Franzolin E, Pontarin G, Rampazzo C, et al. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci U S A. 2013;110:14272‐14277.
Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr‐592. J Biol Chem. 2015;290:26352‐26359.
Tramentozzi E, Ferraro P, Hossain M, Stillman B, Bianchi V, Pontarin G. The dNTP triphosphohydrolase activity of SAMHD1 persists during S‐phase when the enzyme is phosphorylated at T592. Cell Cycle. 2018;17:1102‐1114.
Coquel F, Silva M‐J, Técher H, et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature. 2018;557:57‐61.
Nguyen LA, Kim DH, Daly MB, Allan KC, Kim B. Host SAMHD1 protein promotes HIV‐1 recombination in macrophages. J Biol Chem. 2014;289:2489‐2496.
Bonifati S, Daly MB, St. Gelais C, et al. SAMHD1 controls cell cycle status, apoptosis and HIV‐1 infection in monocytic THP‐1 cells. Virology. 2016;495:92‐100.
Rentoft M, Lindell K, Tran P, et al. Heterozygous colon cancer‐associated mutations of SAMHD1 have functional significance. Proc Natl Acad Sci U S A. 2016;113:4723‐4728.
Chabes A, Stillman B. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2007;104:1183‐1188.
Lee EJ, Seo JH, Park J‐H, et al. SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation. Oncotarget. 2017;8:68517‐68529.
Crow YJ. Aicardi‐Goutières syndrome. Handb Clin Neurol. 2013;113:1629‐1635.
Rehwinkel J, Maelfait J, Bridgeman A, et al. SAMHD1‐dependent retroviral control and escape in mice. EMBO J. 2013;32:2454‐2462.
Behrendt R, Schumann T, Gerbaulet A, et al. Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell‐intrinsic antiviral response. Cell Rep. 2013;4:689‐696.
Kasher PR, Jenkinson EM, Briolat V, et al. Characterization of samhd1 morphant zebrafish recapitulates features of the human type I interferonopathy Aicardi‐Goutières syndrome. J Immunol. 2015;194:2819‐2825.
Kunkel TA. DNA replication fidelity. J Biol Chem. 1992;267:18251‐18254.
Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res. 2011;39:1360‐1371.
Watt DL, Buckland RJ, Lujan SA, Kunkel TA, Chabes A. Genome‐wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Res. 2015;44:1669‐1680.
Clifford R, Louis T, Robbe P, et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood. 2014;123:1021‐1031.
Johansson P, Klein‐Hitpass L, Choidas A, et al. SAMHD1 is recurrently mutated in T‐cell prolymphocytic leukemia. Blood Cancer J. 2018;8:11.
Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun. 2014;455:229‐233.
Pontarin G, Ferraro P, Bee L, Reichard P, Bianchi V. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci U S A. 2012;109:13302‐13307.
Daddacha W, Koyen AE, Bastien AJ, et al. SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep. 2017;20:1921‐1935.
Rice GI, Forte GMA, Szynkiewicz M, et al. Assessment of interferon‐related biomarkers in Aicardi‐Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case‐control study. Lancet Neurol. 2013;12:1159‐1169.
Ramesh V, Bernardi B, Stafa A, et al. Intracerebral large artery disease in Aicardi‐Goutières syndrome implicates SAMHD1 in vascular homeostasis. Dev Med Child Neurol. 2010;52:725‐732.
Rice GI, Bond J, Asipu A, et al. Mutations involved in Aicardi‐Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41:829‐832.
Wittmann S, Behrendt R, Eissmann K, et al. Phosphorylation of murine SAMHD1 regulates its antiretroviral activity. Retrovirology. 2015;12:103.
Franzolin E, Salata C, Bianchi V, Rampazzo C. The deoxynucleoside triphosphate triphosphohydrolase activity of SAMHD1 protein contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase. J Biol Chem. 2015;290:25986‐25996.
Ferraro P, Franzolin E, Pontarin G, Reichard P, Bianchi V. Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res. 2010;38:e85.
Saeed AI, Sharov V, White J, et al. TM4: a free, open‐source system for microarray data management and analysis. Biotechniques. 2003;34:374‐378.
Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 2001;17:126‐136.
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130‐W137.
Li H, Durbin R. Fast and accurate long‐read alignment with Burrows‐Wheeler transform. Bioinformatics. 2010;26:589‐595.
Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078‐2079.
Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and versatile variant caller for next‐generation sequencing in cancer research. Nucleic Acids Res. 2016;44:e108.
Palumbo E, Matricardi L, Tosoni E, Bensimon A, Russo A. Replication dynamics at common fragile site FRA6E. Chromosoma. 2010;119:575‐587.
Palumbo E, Tosoni E, Russo A. General and specific replication profiles are detected in normal human cells by genome‐wide and single‐locus molecular combing. Exp Cell Res. 2013;319:3081‐3093.
Conti C, Saccà B, Herrick J, Lalou C, Pommier Y, Bensimon A. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell. 2007;18:3059‐3067.
Kretschmer S, Wolf C, König N, et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis. 2015;74:e17.
Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G, Costanzo V. Moonlighting at replication forks—a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 2017;591:1083‐1100.
Kumar D, Viberg J, Nilsson AK, Chabes A. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S‐phase checkpoint. Nucleic Acids Res. 2010;38:3975‐3983.
Bester AC, Roniger M, Oren YS, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145:435‐446.
Courbet S, Gay S, Arnoult N, et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature. 2008;455:557‐560.
Anglana M, Apiou F, Bensimon A, Debatisse M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell. 2003;114:385‐394.
Poli J, Tsaponina O, Crabbé L, et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 2012;31:883‐894.
Palumbo E, Tosoni E, Matricardi L, Russo A. Genetic instability of the tumor suppressor gene FHIT in normal human cells. Genes Chromosomes Cancer. 2013;52:832‐844.
Stevanoni M, Palumbo E, Russo A. The replication of frataxin gene is assured by activation of dormant origins in the presence of a GAA‐repeat expansion. PLOS Genet. 2016;12:e1006201.
Thyagarajan B, Anderson KE, Lessard CJ, et al. Alkaline unwinding flow cytometry assay to measure nucleotide excision repair. Mutagenesis. 2007;22:147‐153.
Li N, Zhang W, Cao X. Identification of human homologue of mouse IFN‐gamma induced protein from human dendritic cells. Immunol Lett. 2000;74:221‐224.
Laguette N, Sobhian B, Casartelli N, et al. SAMHD1 is the dendritic‐ and myeloid‐cell‐specific HIV‐1 restriction factor counteracted by Vpx. Nature. 2011;474:654‐657.
Goldstone DC, Ennis‐Adeniran V, Hedden JJ, et al. HIV‐1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480:379‐382.
Powell RD, Holland PJ, Hollis T, Perrino FW. Aicardi‐Goutieres syndrome gene and HIV‐1 restriction factor SAMHD1 is a dGTP‐regulated deoxynucleotide triphosphohydrolase. J Biol Chem. 2011;286:43596‐43600.
Schmidt TT, Sharma S, Reyes GX, et al. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Nucleic Acids Res. 2019;47:237‐252.
Miazzi C, Ferraro P, Pontarin G, Rampazzo C, Reichard P, Bianchi V. Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile α‐motif/histidine‐aspartate domain‐containing protein 1 (SAMHD1). J Biol Chem. 2014;289:18339‐18346.
Goday A, Simmonds HA, Morris GS, Fairbanks LD. B cells as well as T cells form deoxynucleotides from either deoxyadenosine or deoxyguanosine. Clin Exp Immunol. 1984;56:39‐48.
Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 2004;447:735‐743.
Rampazzo C, Ferraro P, Pontarin G, Fabris S, Reichard P, Bianchi V. Mitochondrial deoxyribonucleotides, pool sizes, synthesis, and regulation. J Biol Chem. 2004;279:17019‐17026.
Gazziola C, Ferraro P, Moras M, Reichard P, Bianchi V. Cytosolic high K(m) 5′‐nucleotidase and 5′(3′)‐deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J Biol Chem. 2001;276:6185‐6190.
Contributed Indexing:
Keywords: UV‐induced DNA repair; deoxynucleotide catabolism; deoxynucleotide pool imbalance; sterile alpha motif and HD domain containing protein 1 (SAMHD1)
Substance Nomenclature:
EC 3.1.5.- (SAM Domain and HD Domain-Containing Protein 1)
EC 3.1.5.- (SAMHD1 protein, human)
EC 3.6.5.2 (Monomeric GTP-Binding Proteins)
SCR Disease Name:
Aicardi-Goutieres syndrome
Entry Date(s):
Date Created: 20200110 Date Completed: 20200707 Latest Revision: 20200707
Update Code:
20240105
DOI:
10.1096/fj.201902508R
PMID:
31914608
Czasopismo naukowe
In mammalian cells, the catabolic activity of the dNTP triphosphohydrolase SAMHD1 sets the balance and concentration of the four dNTPs. Deficiency of SAMHD1 leads to unequally increased pools and marked dNTP imbalance. Imbalanced dNTP pools increase mutation frequency in cancer cells, but it is not known if the SAMHD1-induced dNTP imbalance favors accumulation of somatic mutations in non-transformed cells. Here, we have investigated how fibroblasts from Aicardi-Goutières Syndrome (AGS) patients with mutated SAMHD1 react to the constitutive pool imbalance characterized by a huge dGTP pool. We focused on the effects on dNTP pools, cell cycle progression, dynamics and fidelity of DNA replication, and efficiency of UV-induced DNA repair. AGS fibroblasts entered senescence prematurely or upregulated genes involved in G1/S transition and DNA replication. The normally growing AGS cells exhibited unchanged DNA replication dynamics and, when quiescent, faster rate of excision repair of UV-induced DNA damages. To investigate whether the lack of SAMHD1 affects DNA replication fidelity, we compared de novo mutations in AGS and WT cells by exome next-generation sequencing. Somatic variant analysis indicated a mutator phenotype suggesting that SAMHD1 is a caretaker gene whose deficiency is per se mutagenic, promoting genome instability in non-transformed cells.
(© 2019 Federation of American Societies for Experimental Biology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies