Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Cumulative Effect of Transient Synchrony States on Motor Performance in Parkinson's Disease.

Tytuł:
The Cumulative Effect of Transient Synchrony States on Motor Performance in Parkinson's Disease.
Autorzy:
Tinkhauser G; Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH Oxford, United Kingdom.; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.; Department of Neurology, Bern University Hospital and University of Bern, 3010 Bern, Switzerland.
Torrecillos F; Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH Oxford, United Kingdom.; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
Pogosyan A; Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH Oxford, United Kingdom.; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
Mostofi A; Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom.
Bange M; Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
Fischer P; Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH Oxford, United Kingdom.; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
Tan H; Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH Oxford, United Kingdom.; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
Hasegawa H; Department of Neurosurgery,King's College Hospital, King's College London, SE59RS, United Kingdom, and.
Glaser M; Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
Muthuraman M; Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
Groppa S; Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
Ashkan K; Department of Neurosurgery,King's College Hospital, King's College London, SE59RS, United Kingdom, and.
Pereira EA; Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom.
Brown P; Medical Research Council Brain Network Dynamics Unit at the University of Oxford, OX1 3TH Oxford, United Kingdom, .; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
Źródło:
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2020 Feb 12; Vol. 40 (7), pp. 1571-1580. Date of Electronic Publication: 2020 Jan 09.
Typ publikacji:
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Washington, DC : Society for Neuroscience
Original Publication: [Baltimore, Md.] : The Society, c1981-
MeSH Terms:
Basal Ganglia/*physiopathology
Beta Rhythm/*physiology
Electroencephalography Phase Synchronization/*physiology
Hypokinesia/*physiopathology
Parkinson Disease/*physiopathology
Psychomotor Performance/*physiology
Subthalamic Nucleus/*physiopathology
Aged ; Cues ; Deep Brain Stimulation ; Female ; Humans ; Hypokinesia/etiology ; Male ; Middle Aged ; Parkinson Disease/therapy ; Photic Stimulation
References:
J Neurosci. 2018 Oct 10;38(41):8905-8917. (PMID: 30181135)
Clin Neurophysiol. 2019 May;130(5):727-738. (PMID: 30903826)
J Neurosci. 2008 Jun 11;28(24):6165-73. (PMID: 18550758)
Brain Res. 1981 Nov 9;224(1):1-29. (PMID: 7284825)
Mov Disord. 2018 Oct;33(10):1609-1618. (PMID: 30145811)
Neuroimage. 2014 Jan 15;85 Pt 2:637-47. (PMID: 23711535)
J Neurophysiol. 2017 Jun 1;117(6):2140-2151. (PMID: 28202569)
Curr Biol. 2018 Apr 23;28(8):1169-1178.e6. (PMID: 29606416)
Am J Anat. 1967 Jul;121(1):41-72. (PMID: 4964005)
Ann Neurol. 2013 Sep;74(3):449-57. (PMID: 23852650)
J Neurosci. 2005 Aug 24;25(34):7771-9. (PMID: 16120778)
Neurosurgery. 2010 Aug;67(2):390-7. (PMID: 20644424)
Curr Biol. 2018 Aug 20;28(16):2515-2526.e4. (PMID: 30100342)
Neurobiol Dis. 2019 Jul;127:462-471. (PMID: 30898668)
Exp Neurol. 2006 Mar;198(1):214-21. (PMID: 16403500)
Neurobiol Dis. 2016 Dec;96:22-30. (PMID: 27553876)
J Neurol Neurosurg Psychiatry. 2011 May;82(5):569-73. (PMID: 20935326)
Brain. 2017 Nov 1;140(11):2968-2981. (PMID: 29053865)
Brain. 2017 Apr 1;140(4):1053-1067. (PMID: 28334851)
Exp Neurol. 2009 Feb;215(2):380-7. (PMID: 19070616)
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5670-4. (PMID: 1608977)
Eur J Neurosci. 2008 Mar;27(5):1277-84. (PMID: 18312587)
Elife. 2017 Nov 06;6:. (PMID: 29106374)
Neurobiol Dis. 2018 Sep;117:217-225. (PMID: 29909050)
J Neurosci. 2008 Apr 30;28(18):4795-806. (PMID: 18448656)
J Neurophysiol. 1996 Dec;76(6):3949-67. (PMID: 8985892)
Exp Neurol. 2011 Jun;229(2):324-31. (PMID: 21376039)
Brain. 2016 May;139(Pt 5):1482-96. (PMID: 27017189)
Eur J Neurosci. 2006 Apr;23(7):1956-60. (PMID: 16623853)
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13687-92. (PMID: 26460033)
Mov Disord. 2003 Apr;18(4):357-63. (PMID: 12671940)
Mov Disord. 2018 Jan;33(1):159-164. (PMID: 29150884)
Hum Brain Mapp. 2017 Jul;38(7):3377-3390. (PMID: 28390148)
Clin Neurophysiol. 2006 Oct;117(10):2315-27. (PMID: 16926112)
Brain. 2010 Jul;133(Pt 7):2007-21. (PMID: 20534648)
Grant Information:
MC_UU_00003/2 United Kingdom MRC_ Medical Research Council; MC_UU_12024/1 United Kingdom MRC_ Medical Research Council; MR/P012272/1 United Kingdom MRC_ Medical Research Council
Contributed Indexing:
Keywords: Parkinson's disease; beta oscillations; local field potentials
Entry Date(s):
Date Created: 20200111 Date Completed: 20200819 Latest Revision: 20210113
Update Code:
20240105
PubMed Central ID:
PMC7044725
DOI:
10.1523/JNEUROSCI.1975-19.2019
PMID:
31919131
Czasopismo naukowe
Bursts of beta frequency band activity in the basal ganglia of patients with Parkinson's disease (PD) are associated with impaired motor performance. Here we test in human adults whether small variations in the timing of movement relative to beta bursts have a critical effect on movement velocity and whether the cumulative effects of multiple beta bursts, both locally and across networks, matter. We recorded local field potentials from the subthalamic nucleus (STN) in 15 PD patients of both genders OFF-medication, during temporary lead externalization after deep brain stimulation surgery. Beta bursts were defined as periods exceeding the 75th percentile amplitude threshold. Subjects performed a visual cued joystick reaching task, with the visual cue being triggered in real time with different temporal relationships to bursts of STN beta activity. The velocity of actions made in response to cues prospectively triggered by STN beta bursts was slower than when responses were not time-locked to recent beta bursts. Importantly, slow movements were those that followed multiple bursts close to each other within a trial. In contrast, small differences in the delay between the last burst and movement onset had no significant impact on velocity. Moreover, when the overlap of bursts between the two STN was high, slowing was more pronounced. Our findings suggest that the cumulative, but recent, history of beta bursting, both locally and across basal ganglia networks, may impact on motor performance. SIGNIFICANCE STATEMENT Bursts of beta frequency band activity in the basal ganglia are associated with slowing of voluntary movement in patients with Parkinson's disease. We show that slow movements are those that follow multiple bursts close to each other and bursts that are coupled across regions. These results suggest that the cumulative, but recent, history of beta bursting, both locally and across basal ganglia networks, impacts on motor performance in this condition. The manipulation of burst dynamics may be a means of selectively improving motor impairment.
(Copyright © 2020 the authors.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies