Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Water-Stable Lanthanide Coordination Polymer as Multicenter Platform for Ratiometric Luminescent Sensing Antibiotics.

Tytuł:
A Water-Stable Lanthanide Coordination Polymer as Multicenter Platform for Ratiometric Luminescent Sensing Antibiotics.
Autorzy:
Wu S; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P.R. China.; The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province, Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P.R. China.
Zhu M; The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province, Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P.R. China.
Zhang Y; The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province, Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P.R. China.
Kosinova M; Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk, 630090, Russian Federation.
Fedin VP; Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk, 630090, Russian Federation.
Gao E; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P.R. China.; The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province, Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P.R. China.
Źródło:
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2020 Mar 09; Vol. 26 (14), pp. 3137-3144. Date of Electronic Publication: 2020 Feb 25.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH
MeSH Terms:
Anti-Bacterial Agents/*analysis
Coordination Complexes/*chemistry
Dysprosium/*chemistry
Fluorescent Dyes/*chemistry
Metal-Organic Frameworks/*chemistry
Samarium/*chemistry
Fluorescence Resonance Energy Transfer ; Furazolidone/analysis ; Ligands ; Limit of Detection ; Molecular Structure ; Nitrofurazone/analysis ; Solubility
References:
.
R. Singh, L. Sripada, Mitochondrion 2014, 16, 50-54;.
S. A. Walper, G. Lasarte Aragones, K. E. Sapsford, C. W. Brown, C. E. Rowland, J. C. Breger, I. L. Medintz, ACS Sens. 2018, 3, 1894-2024.
 .
J. C. Liang, H. Y. Xiong, W. Wang, W. Wen, X. H. Zhang, S. F. Wang, Sens. Actuators B 2018, 255, 2170-2178;.
W. Baran, E. Adamek, J. Ziemianska, A. Sobczak, J. Hazard. Mater. 2011, 196, 1-15;.
F. Yin, H. Dong, W. Zhang, Z. Zhu, B. Shang, Bioresour. Technol. 2018, 250, 247-255;.
Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao, Environ. Sci. Technol. 2015, 49, 6772-6782;.
E. Benito-Peña, J. B. Urraca, M. C. Moreno-Bondi, J. Pharm. Biomed. Anal. 2009, 49, 289-294;.
D. Moreno-González, F. J. Lara, N. Jurgovská, L. Gámiz-Gracia, A. M. García-Campaña, Anal. Chim. Acta 2015, 891, 321-328;.
A. B. A. Boxall, M. A. Rudd, B. W. Brooks, D. J. Caldwell, K. Choi, S. Hickmann, E. Innes, K. Ostapyk, J. P. Staveley, T. Verslycke, G. T. Ankley, K. F. Beazley, S. E. Belanger, J. P. Berninger, P. Carriquiriborde, A. Coors, P. C. DeLeo, S. D. Dyer, J. F. Ericson, F. Gagné, J. P. Giesy, T. Gouin, L. Hallstrom, M. V. Karlsson, D. G. J. Larsson, J. M. Lazorchak, F. Mastrocco, A. McLaughlin, M. E. McMaster, R. D. Meyerhoff, R. Moore, J. L. Parrott, J. R. Snape, R. Murray-Smith, M. R. Servos, P. K. Sibley, J. O. Straub, N. D. Szabo, E. Topp, G. R. Tetreault, V. L. Trudeau, G. V. D. Kraak, Environ. Health Perspect. 2012, 120, 1221-1229.
B. Toussaint, M. Chedin, U. Vincent, G. Bordin, A. R. Rodriguez, J. Chromatogr. A 2005, 1088, 40-48.
X. H. Zhang, Y. Deng, M. Z. Zhao, Y. L. Zhou, X. X. Zhang, RSC Adv. 2018, 8, 4063-4071.
H. B. Liu, N. Gan, Y. J. Chen, T. H. Li, Y. T. Cao, RSC Adv. 2017, 7, 6800-6808.
J. Moros, J. J. Laserna, Anal. Chem. 2011, 83, 6275-6285.
K. D. Altria, Y. L. Chanter, J. Chrom. A 1993, 652, 459-463.
M. Tabrizchi, V. Ilbeigi, J. Hazard. Mater. 2010, 176, 692-696.
B. G. Knecht, A. Strasser, R. Dietrich, E. Märtlbauer, R. Niessner, M. G. Weller, Anal. Chem. 2004, 76, 646-654.
K. Kumar, A. Thompson, A. K. Singh, Y. Chander, S. C. Gupta, J. Environ. Qual. 2004, 33, 250-256.
 .
X. Fang, X. Chen, Y. Liu, Q. Li, Z. Zeng, T. Maiyalagan, S. Mao, ACS Appl. Nano Mater. 2019, 2, 2367-2376;.
R. Wang, X. Zhou, B. Liedberg, X. Zhu, A. G. Memon, H. Shi, ACS Appl. Mater. Interfaces 2017, 9, 35492-35497.
 .
Y. M. Wang, Z. R. Yang, L. Xiao, X. B. Yin, Anal. Chem. 2018, 90, 5758-5763;.
X. Y. Dong, R. Wang, J. Z. Wang, S. Q. Zang, T. C. W. Mak, J. Mater. Chem. A 2015, 3, 641-647.
 .
W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242-3285;.
Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815-5840;.
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125;.
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 2005, 309, 2040-2042;.
Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, J. Am. Chem. Soc. 2012, 134, 3979-3982;.
Z. S. Han, K. Y. Wang, Y. F. Guo, W. J. Chen, J. L. Zhang, X. R. Zhang, G. Siligardi, S. H. Yang, Z. Zhou, P. C. Sun, W. Shi, P. Cheng, Nat. Commun. 2019, 10, 5117;.
S. Y. Wu, H. Min, W. Shi, P. Cheng, Adv. Mater. 2019, 1805871;.
S. Y. Zhang, W. Shi, P. Cheng, M. J. Zaworotko, J. Am. Chem. Soc. 2015, 137, 12203-12206;.
J. M. Zhou, H. H. Li, H. Zhang, H. M. Li, W. Shi, P. Cheng, Adv. Mater. 2015, 27, 7072-7077.
 .
S. L. Hou, J. Dong, X. L. Jiang, Z. H. Jiao, C. M. Wang, B. Zhao, Anal. Chem. 2018, 90, 1516-1519;.
B. Wang, X. L. Lv, D. Feng, L. H. Xie, J. Zhang, M. Li, Y. Xie, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204-6216;.
H. He, Y. Q. Xue, S. Q. Wang, Q. Q. Zhu, J. Chen, C. P. Li, M. Du, Inorg. Chem. 2018, 57, 15062-15068.
X. F. Hou, Q. X. Yu, F. Zeng, J. H. Ye, S. Z. Wu, J. Mater. Chem. B 2015, 3, 1042-1048.
 .
X. D. Wang, O. S. Wolfbeis, R. J. Meier, Chem. Soc. Rev. 2013, 42, 7834-7869;.
L. F. Chen, X. K. Tian, C. Yang, Y. Li, Z. X. Zhou, Y. X. Wang, F. Xiang, Sens. Actuators B 2017, 240, 66-75;.
C. Dai, C. X. Yang, X. P. Yan, Anal. Chem. 2015, 87, 11455-11459;.
R. Xu, Y. Wang, X. Duan, K. Lu, D. Micheroni, A. Hu, W. Lin, J. Am. Chem. Soc. 2016, 138, 2158-2161;.
H. Tan, Q. Li, C. Ma, Y. Song, F. Xu, S. Chen, L. Wang, Biosens. Bioelectron. 2015, 63, 566-571;.
J. Fan, M. Hu, P. Zhan, X. Peng, Chem. Soc. Rev. 2013, 42, 29-43.
 .
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, B. Chen, G. Qian, Adv. Mater. 2015, 27, 1420-1425;.
C. Wang, L. Tian, W. Zhu, S. Wang, P. Wang, Y. Liang, W. Zhang, H. Zhao, G. Li, ACS Appl. Mater. Interfaces 2017, 9, 20076-20085;.
S. Y. Wu, H. Min, W. Shi, P. Cheng, Adv. Mater. 2019, 1805871.
 .
D. Zhao, D. Yue, K. Jiang, Y. J. Cui, Q. Zhang, Y. Yang, G. D. Qian, J. Mater. Chem. C 2017, 5, 1607-1613;.
D. Zhao, D. J. Timmons, D. Q. Yuan, H. C. Zhou, Acc. Chem. Res. 2011, 44, 123-133.
Y. Dong, J. Cai, Q. Fang, X. You, Y. Chi, Anal. Chem. 2016, 88, 1748-1752.
B. Gao, D. Zhang, T. Don, J. Phys. Chem. C 2015, 119, 16403-16413.
 .
Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126-1162;.
M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330-1352.
Y. C. He, H. M. Zhang, Y. Y. Liu, Q. Y. Zhai, Q. T. Shen, S. Y. Song, J. F. Ma, Cryst. Growth Des. 2014, 14, 3174-3178.
 .
M. J. Dong, M. Zhao, S. Ou, C. Zou, C. D. Wu, Angew. Chem. Int. Ed. 2014, 53, 1575-1579;.
Angew. Chem. 2014, 126, 1601-1605;.
S. N. Zhao, X. Z. Song, M. Zhu, X. Meng, L. L. Wu, J. Feng, S. Y. Song, H. J. Zhang, Chem. Eur. J. 2015, 21, 9748-9752;.
C. Zhan, S. Ou, C. Zou, M. Zhao, C. D. Wu, Anal. Chem. 2014, 86, 6648-6653.
 .
X. Wan, S. Liu, J. Mater. Chem. 2011, 21, 10321-10329;.
A. E. Thorarinsdottir, K. Du, J. H. P. Collins, T. D. Harris, J. Am. Chem. Soc. 2017, 139, 15836-15847;.
X. X. Hu, Y. Q. Wang, H. Y. Liu, J. Wang, Y. N. Tan, F. B. Wang, Q. Yuan, W. H. Tan, Chem. Sci. 2017, 8, 466-472;.
X. X. Hu, T. Wei, J. Wang, Z. E. Liu, X. Y. Li, B. H. Zhang, Z. H. Li, L. L. Li, Q. Yuan, Anal. Chem. 2014, 86, 10484-10491.
Y. Zhou, B. Yan, Chem. Commun. 2016, 52, 2265-2268.
 .
J. N. Hao, B. Yan, Adv. Funct. Mater. 2017, 27, 1603856-1603863;.
J. N. Hao, B. Yan, Chem. Commun. 2015, 51, 7737-7740;.
J. Wang, M. Jiang, L. Yan, R. Peng, M. J. Huangfu, X. X. Guo, Y. Li, P. Y. Wu, Inorg. Chem. 2016, 55, 12660-12668;.
A. M. Committee, Analyst 1987, 112, 199-204.
 .
Z. C. Liang, M. Kang, G. F. Payne, X. H. Wang, R. C. Sun, ACS Appl. Mater. Interfaces 2016, 8, 17478-17488;.
D. Dinda, A. Gupta, B. K. Shaw, S. Sadhu, S. K. Saha, ACS Appl. Mater. Interfaces 2014, 6, 10722-10728.
 .
S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, S. K. Ghosh, Angew. Chem. Int. Ed. 2013, 52, 2881-2885;.
Angew. Chem. 2013, 125, 2953-2957;.
M. E. Germain, M. J. Knapp, Chem. Soc. Rev. 2009, 38, 2543-2555;.
S. Y. Wu, Y. N. Lin, J. W. Liu, W. Shi, G. M. Yang, P. Cheng, Adv. Funct. Mater. 2018, 28, 1707169.
 .
Y. Salinas, R. Martinez-Manez, M. D. Marcos, F. Sancenon, A. M. Castero, M. Parra, S. Gil, Chem. Soc. Rev. 2012, 41, 1261-1296;.
L. B. Sun, H. Z. Xing, J. Xu, Z. Q. Liang, J. H. Yu, R. R. Xu, Dalton Trans. 2013, 42, 5508-5513;.
J. C. Sanchez, A. G. DiPasquale, A. L. Rheingold, W. C. Trogler, Chem. Mater. 2007, 19, 6459-6470;.
S. Ramachandra, Z. D. Popović, K. C. Schuermann, F. Cucinotta, G. Calzaferri, L. D. Cola, Small 2011, 7, 1488-1494.
 .
J. M. Zhou, W. Shi, H. M. Li, H. Li, P. Cheng, J. Phys. Chem. C 2014, 118, 416-426;.
W. Cheung, M. Patel, Y. Ma, Y. Chen, Q. Xie, J. V. Lockard, H. He, Chem. Sci. 2016, 7, 5192-5199.
 .
M. Du, C. P. Li, C. S. Liu, S. M. Fang, Coord. Chem. Rev. 2013, 257, 1282-1305;.
D. M. Chen, J. Y. Tian, C. S. Liu, Inorg. Chem. 2016, 55, 8892-8897;.
M. M. Guo, S. X. Liu, H. D. Guo, Y. Y. Sun, X. M. Guo, R. P. Deng, Dalton Trans. 2017, 46, 14988-14994;.
Y. M. Zhang, S. Yuan, G. Day, X. Wang, X. Y. Yang, H. C. Zhou, Coord. Chem. Rev. 2018, 354, 28-45.
H. Li, H. Wang, L. Wang, J. Mater. Chem. C 2013, 1, 1105-1110.
G. M. Sheldrick, SHELXTL NT Version 5.1, Program for Solution and Refinement of Crystal Structures, University of Göttingen: Germany, 1997.
 .
G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122;.
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341;.
J. Ferrando-Soria, H. Khajavi, P. Serra-Crespo, J. Gascon, F. Kapteijn, M. Julve, F. Lloret, J. Pasán, C. Ruiz-Pérez, Y. Journaux, E. Pardo, Adv. Mater. 2012, 24, 5625-5629.
Grant Information:
U1608224 National Natural Science Foundation of China; 21171118 National Natural Science Foundation of China; Distinguished Professor of Liaoning Province; 20180551108 Natural Science Foundation of Liaoning Province; LJ2019010 the Department of Education Basic Research Project of Liaoning Province
Contributed Indexing:
Keywords: antibiotics; antibiotics pollution; luminescence; self-calibration; sensors; water stability
Substance Nomenclature:
0 (Anti-Bacterial Agents)
0 (Coordination Complexes)
0 (Fluorescent Dyes)
0 (Ligands)
0 (Metal-Organic Frameworks)
1D4N45714Q (Dysprosium)
42OD65L39F (Samarium)
5J9CPU3RE0 (Furazolidone)
X8XI70B5Z6 (Nitrofurazone)
Entry Date(s):
Date Created: 20200119 Date Completed: 20200406 Latest Revision: 20200408
Update Code:
20240104
DOI:
10.1002/chem.201905027
PMID:
31953890
Czasopismo naukowe
As a hot topic of global concern, the distinguishing and detecting of antibiotic pollution is crucial owing to its adverse effect on ecosystems and human health stemming from excessive use and poor management. Herein, a water-stable lanthanide coordination polymer sensor (Dy-TCPB) with multiple emitting centers is prepared. The versatile Dy-TCPB can conveniently differentiate various antibiotics, and displays a self-calibration luminescent response to nitrofurazone (NFZ) and furazolidone (FZD). Each antibiotic exhibits notable correlation to a unique combination of the two ligand-to-Dy ion emission intensity ratios, enabling two-dimensional fingerprint recognition. Furthermore, the novel self-calibration sensor demonstrates effective recognition of NFZ and FZD with excellent sensitivity and selectivity, and detection limits as low as 0.0476 and 0.0482 μm for NFZ and FZD, respectively. The synthetic approach for the fabrication of a singular coordination polymer exhibiting multiple emissions provides a promising strategy for the development of facile and effective ratiometric sensors.
(© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies