Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mycobacterial antigens accumulation in foamy macrophages in murine pulmonary tuberculosis lesions: Association with necrosis and making of cavities.

Tytuł:
Mycobacterial antigens accumulation in foamy macrophages in murine pulmonary tuberculosis lesions: Association with necrosis and making of cavities.
Autorzy:
Riaz SM; Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
Bjune GA; Department of Community Medicine, Institute of Health and Society, The Faculty of Medicine, University of Oslo, Oslo, Norway.
Wiker HG; Department of Clinical Science, University of Bergen, Bergen, Norway.
Sviland L; Department of Clinical Medicine, University of Bergen, Bergen, Norway.; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
Mustafa T; Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.
Źródło:
Scandinavian journal of immunology [Scand J Immunol] 2020 Apr; Vol. 91 (4), pp. e12866. Date of Electronic Publication: 2020 Feb 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Oxford : Blackwell Scientific Publications
Original Publication: Oslo, Universitetsforlaget.
MeSH Terms:
Antigens, Bacterial/*immunology
Foam Cells/*immunology
Foam Cells/*microbiology
Tuberculosis, Pulmonary/*pathology
Animals ; Foam Cells/pathology ; Mice ; Mycobacterium tuberculosis ; Necrosis ; Tuberculosis, Pulmonary/immunology
References:
World Health Organization, 2018 Available from URL: https://www.who.int/tb/publications/global_report/en/.
Yoder MA, Lamichhane G, Bishai WR. Cavitary pulmonary tuberculosis: the Holy Grail of disease transmission. Curr Sci. 2004;86:74-81.
Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J Immunol. 2010;185:15-22.
Rich AR. The Pathogenesis of Tuberculosis. 2nd edn. Springfield, IL: Charles C Thomas, 1951.
Canetti G. The Tubercle Bacillus in the Pulmonary Lesion of Man: Histobacteriology and Its Bearing on the Therapy of Pulmonary Tuberculosis. New York: Springer Publishing Company; 1955.
Medlar EM. The behavior of pulmonary tuberculous lesions; a pathological study. Am Rev Tuberculosis. 1955;71:1-244.
Canetti G, The J. Burns amberson lecture. Am Rev Respir Dis. 1965;92(5):687-703.
Mustafa T, Phyu S, Nilsen R, Bjune G, Jonsson R. Increased expression of Fas ligand on Mycobacterium tuberculosis infected macrophages: a potential novel mechanism of immune evasion by Mycobacterium tuberculosis? Inflammation. 1999;23(6):507-521.
Mustafa T, Wiker HG, Mørkve O, Sviland L. Reduced apoptosis and increased inflammatory cytokines in granulomas caused by tuberculous compared to non-tuberculous mycobacteria: role of MPT64 antigen in apoptosis and immune response. Clin Exp Immunol. 2007;150(1):105-113.
Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol. 2009;11(8):1170-1178.
Hunter R, Actor J, Hwang S-A, et al. Pathogenesis and animal models of post-primary (bronchogenic) tuberculosis, a review. Pathogens. 2018;7(1):19.
Mustafa T, Bjune G, Jonsson R, Hernandez Pando R, Nilsen R. Increased expression of fas ligand in human tuberculosis and leprosy lesions: a potential novel mechanism of immune evasion in mycobacterial infection. Scand J Immunol. 2001;54(6):630-639.
Mogga S, Mustafa T, Sviland L, Nilsen R. Increased Bcl-2 and reduced Bax expression in infected macrophages in slowly progressive primary murine Mycobacterium tuberculosis infection. Scand J Immunol. 2002;56(4):383-391.
Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci. 2006;36(4):371-386.
Mustafa T, Phyu S, Nilsen R, Jonsson R, Bjune G. A mouse model for slowly progressive primary tuberculosis. Scand J Immunol. 1999;50(2):127-136.
Nagai S, Wiker HG, Harboe M, Kinomoto M. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun. 1991;59(1):372-382.
Mustafa T, Wiker HG, Mfinanga SGM, Mørkve O, Sviland L. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Mod Pathol. 2006;19:1606.
Wiker HG, Harboe M, Nagai S. A localization index for distinction between extracellular and intracellular antigens of Mycobacterium tuberculosis. Microbiology. 1991;137(4):875-884.
Johnson S, Brusasca P, Lyashchenko K, et al. Characterization of the secreted MPT53 antigen of Mycobacterium tuberculosis. Infect Immun. 2001;69(9):5936-5939.
Mustafa T, Leversen NA, Sviland L, Wiker HG. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis. 2014;14(1):535.
Majlessi L, Prados-Rosales R, Casadevall A, Brosch R. Release of mycobacterial antigens. Immunol Rev. 2015;264(1):25-45.
Andersen P, Askgaard D, Ljungqvist L, Bentzon MW, Heron I. T-cell proliferative response to antigens secreted by Mycobacterium tuberculosis. Infect Immun. 1991;59(4):1558-1563.
Wieles B, Nagai S, Wiker HG, Harboe M, Ottenhoff T. Identification and functional characterization of thioredoxin of Mycobacterium tuberculosis. Infect Immun. 1995;63(12):4946-4948.
Akif M, Khare G, Tyagi AK, Mande SC, Sardesai AA. Functional studies of multiple thioredoxins from Mycobacterium tuberculosis. J Bacteriol. 2008;190(21):7087-7095.
Sweeney N, Lipker L, Hanson A, et al. Docking into Mycobacterium tuberculosis thioredoxin reductase protein yields pyrazolone lead molecules for methicillin-resistant Staphylococcus aureus. Antibiotics. 2017;6(1):4.
Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, Steyn AJC. Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev Mol Med. 2011;13:e39.
Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75-87.
Manca C, Lyashchenko K, Wiker HG, Usai D, Colangeli R, Gennaro ML. Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis. Infect Immun. 1997;65(1):16-23.
Goulding CW, Parseghian A, Sawaya MR, et al. Crystal structure of a major secreted protein of Mycobacterium tuberculosis-MPT63 at 1.5-Å resolution. Protein Sci. 2002;11(12):2887-2893.
Chu TPJ, Yuann JMP. Expression, purification, and characterization of protective MPT64 antigen protein and identification of its multimers isolated from nontoxic Mycobacterium tuberculosis H37Ra. Biotechnol Appl Biochem. 2011;58(3):185-189.
Behr M, Wilson M, Gill W, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999;284(5419):1520-1523.
Grant Information:
Project number 234457 Research Council of Norway through the Global Health and Vaccination Programme (GLOBVAC). This project is part of the EDCTP2 programme supported by the European Union.
Contributed Indexing:
Keywords: foamy macrophages; murine tuberculosis; mycobacterial antigens
Substance Nomenclature:
0 (Antigens, Bacterial)
Entry Date(s):
Date Created: 20200122 Date Completed: 20200330 Latest Revision: 20200330
Update Code:
20240104
DOI:
10.1111/sji.12866
PMID:
31960452
Czasopismo naukowe
Understanding mechanisms of cavitation in tuberculosis (TB) is the missing link that could advance the field towards better control of the infection. Descriptions of human TB suggest that postprimary TB begins as lipid pneumonia of foamy macrophages that undergoes caseating necrosis and fragmentation to produce cavities. This study aimed to investigate the various mycobacterial antigens accumulating in foamy macrophages and their relation to tissue destruction and necrosis. Pulmonary tissues from mice with slowly progressive TB were studied for histopathology, acid-fast bacilli (AFB) and presence of mycobacterial antigens. Digital quantification using Aperio ImageScope was done. Until week 12 postinfection, mice were healthy, and lesions were small with scarce AFB and mycobacterial antigens. Colony-forming units (CFUs) increased exponentially. At week 16-33, mice were sick, macrophages attained foamy appearance with an increase in antigens (P < .05), 1.5 log increase in CFUs and an approximately onefold increase in AFB. At week 37-41, mice started dying with a shift in morphology towards necrosis. A >20-fold increase in mycobacterial antigens was observed with only less than one log increase in CFUs and sevenfold increase in AFB. Secreted antigens were significantly (P < .05) higher compared to cell-wall antigens throughout infection. Focal areas of necrosis were associated with an approximately 40-fold increase in antigen MPT46, functionally active thioredoxin, and a significant increase in all secreted antigens. In conclusion, mycobacterial antigens accumulate in the foamy macrophages in TB lesions during slowly progressive murine pulmonary TB. Secreted antigens and MPT46 correlated with necrosis, thereby implying that they might trigger the formation of cavities.
(© 2020 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Scandinavian Foundation for Immunology.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies