Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data.

Tytuł:
Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data.
Autorzy:
Romanchek GR; Department of Nuclear, Plasma, and Radiological Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
Liu Z; Department of Nuclear, Plasma, and Radiological Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
Abbaszadeh S; Department of Nuclear, Plasma, and Radiological Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.; Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America.
Źródło:
PloS one [PLoS One] 2020 Jan 23; Vol. 15 (1), pp. e0228048. Date of Electronic Publication: 2020 Jan 23 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Algorithms*
Gamma Rays*
Normal Distribution*
ROC Curve ; Reproducibility of Results
References:
PLoS One. 2018 Oct 19;13(10):e0205092. (PMID: 30339704)
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):1152-60. (PMID: 11046387)
Appl Radiat Isot. 2008 Mar;66(3):362-71. (PMID: 17980610)
Sensors (Basel). 2019 Feb 24;19(4):null. (PMID: 30813497)
Int J Neural Syst. 2004 Apr;14(2):69-106. (PMID: 15112367)
Appl Radiat Isot. 2012 Oct;70(10):2428-39. (PMID: 22871449)
Neural Comput. 2002 Mar;14(3):641-68. (PMID: 11860686)
Entry Date(s):
Date Created: 20200124 Date Completed: 20200414 Latest Revision: 20200414
Update Code:
20240105
PubMed Central ID:
PMC6977756
DOI:
10.1371/journal.pone.0228048
PMID:
31971971
Czasopismo naukowe
In radioactive source surveying protocols, a number of task-inherent features degrade the quality of collected gamma ray spectra, including: limited dwell times, a fluctuating background, a large distance to the source, weak source activity, and the low sensitivity of mobile detectors. Thus, collected gamma ray spectra are expected to be sparse and noise dominated. For extremely sparse spectra, direct background subtraction is infeasible and many background estimation techniques do not apply. In this paper, we present a statistical algorithm for source estimation and anomaly detection under such conditions. We employ a fixed-hyperparameter Gaussian processes regression methodology with a linear innovation sequence scheme in order to quickly update an ongoing source distribution estimate with no prior training required. We have evaluated the effectiveness of this approach for anomaly detection using background spectra collected with a Kromek D3S and simulated source spectrum and hyperparameters defined by detector characteristics and information derived from collected spectra. We attained an area under the ROC curve of 0.902 for identifying sparse source peaks within a sparse gamma ray spectrum and achieved a true positive rate of 93% when selecting the optimum thresholding value derived from the ROC curve.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies