Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mycobacterium abscessus subsp. massiliense expressing bacterioferritin have improved resistance to stressful conditions.

Tytuł:
Mycobacterium abscessus subsp. massiliense expressing bacterioferritin have improved resistance to stressful conditions.
Autorzy:
Oliveira FM; Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
Marinho FV; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Oliveira SC; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Resende DP; Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
Junqueira-Kipnis AP; Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
Kipnis A; Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
Źródło:
Journal of applied microbiology [J Appl Microbiol] 2020 Jun; Vol. 128 (6), pp. 1802-1813. Date of Electronic Publication: 2020 Feb 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2022- : Oxford : Oxford University Press
Original Publication: Oxford : Published for the Society for Applied Bacteriology by Blackwell Science, c1997-
MeSH Terms:
Bacterial Proteins/*metabolism
Cytochrome b Group/*metabolism
Ferritins/*metabolism
Mycobacterium abscessus/*pathogenicity
Mycobacterium abscessus/*physiology
Animals ; Bacterial Load ; Bacterial Proteins/genetics ; Cytochrome b Group/genetics ; Ferritins/genetics ; Mice ; Mycobacterium Infections, Nontuberculous/microbiology ; Mycobacterium Infections, Nontuberculous/pathology ; Mycobacterium abscessus/genetics ; Mycobacterium abscessus/growth & development ; Mycobacterium tuberculosis/genetics ; Recombinant Proteins/genetics ; Recombinant Proteins/metabolism ; Stress, Physiological ; Virulence
References:
Andrews, S.C. (1998) Iron storage in bacteria. Adv Microb Physiol 40, 281-351.
Andrews, S.C., Robinson, A.K. and Rodriguez-Quinones, F. (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215-237.
Bryant, J.M., Grogono, D.M., Rodriguez-Rincon, D., Everall, I., Brown, K.P., Moreno, P., Verma, D., Hill, E. et al. (2016) Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 354, 751-757.
Cardoso, A.M., Martins de Sousa, E., Viana-Niero, C., Bonfim de Bortoli, F., Pereira das Neves, Z.C., Leao, S.C., Junqueira-Kipnis, A.P. and Kipnis, A. (2008) Emergence of nosocomial Mycobacterium massiliense infection in Goias, Brazil. Microbes Infect 10, 1552-1557.
Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K. et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544.
De Voss, J.J., Rutter, K., Schroeder, B.G. and Barry, C.E. 3rd (1999) Iron acquisition and metabolism by mycobacteria. J Bacteriol 181, 4443-4451.
De Voss, J.J., Rutter, K., Schroeder, B.G., Su, H., Zhu, Y. and Barry, C.E. 3rd (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97, 1252-1257.
Esther, C.R. Jr, Esserman, D.A., Gilligan, P., Kerr, A. and Noone, P.G. (2010) Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros 9, 117-123.
Gold, B., Rodriguez, G.M., Marras, S.A., Pentecost, M. and Smith, I. (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42, 851-865.
Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I. and Deretic, V. (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766.
Imlay, J.A., Chin, S.M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640-642.
Khare, G., Nangpal, P. and Tyagi, A.K. (2017) Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis. PLoS ONE 12, e0169545.
Kim, S.W., Subhadra, B., Whang, J., Back, Y.W., Bae, H.S., Kim, H.J. and Choi, C.H. (2017) Clinical Mycobacterium abscessus strain inhibits autophagy flux and promotes its growth in murine macrophages. Pathog Dis 75, https://doi.org/10.1093/femspd/ftx107.
Kim, B.R., Kim, B.J., Kook, Y.H. and Kim, B.J. (2019) Phagosome escape of rough Mycobacterium abscessus strains in murine macrophage via phagosomal rupture can lead to type i interferon production and their cell-to-cell spread. Front Immunol 10, 125.
Kumar, B., Sharma, D., Sharma, P., Katoch, V.M., Venkatesan, K. and Bisht, D. (2013) Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J Proteomics 94, 68-77.
Kurthkoti, K., Tare, P., Paitchowdhury, R., Gowthami, V.N., Garcia, M.J., Colangeli, R., Chatterji, D., Nagaraja, V. et al. (2015) The mycobacterial iron-dependent regulator IdeR induces ferritin (bfrB) by alleviating Lsr2 repression. Mol Microbiol 98, 864-877.
Lagranderie, M., Lo-Man, R., Deriaud, E., Gicquel, B., Gheorghiu, M. and Leclerc, C. (1997) Genetic control of antibody responses induced by recombinant Mycobacterium bovis BCG expressing a foreign antigen. Infect Immun 65, 3057-3064.
Le Dantec, C., Winter, N., Gicquel, B., Vincent, V. and Picardeau, M. (2001) Genomic sequence and transcriptional analysis of a 23-kilobase mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J Bacteriol 183, 2157-2164.
Medjahed, H., Gaillard, J.L. and Reyrat, J.M. (2010) Mycobacterium abscessus: a new player in the mycobacterial field. Trends Microbiol 18, 117-123.
Mohanty, A., Subhadarshanee, B., Barman, P., Mahapatra, C., Aishwarya, B. and Behera, R.K. (2019) Iron mineralizing bacterioferritin A from Mycobacterium tuberculosis exhibits unique catalase-Dps-like dual activities. Inorg Chem 58, 4741-4752.
Oberley-Deegan, R.E., Rebits, B.W., Weaver, M.R., Tollefson, A.K., Bai, X., McGibney, M., Ovrutsky, A.R., Chan, E.D. et al. (2010) An oxidative environment promotes growth of Mycobacterium abscessus. Free Radic Biol Med 49, 1666-1673.
Oliveira, F.M., Da Costa, A.C., Procopio, V.O., Garcia, W., Araújo, J.N., Da Silva, R.A., Junqueira-Kipnis, A.P. and Kipnis, A. (2018) Mycobacterium abscessus subsp. massiliense mycma_0076 and mycma_0077 genes code for ferritins that are modulated by iron concentration. Front Microbiol 9, https://doi.org/10.3389/fmicb.2018.01072.
Pandey, R. and Rodriguez, G.M. (2012) A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect Immun 80, 3650-3659.
Pandey, R. and Rodriguez, G.M. (2014) IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol Microbiol 91, 98-109.
Ponpuak, M., Davis, A.S., Roberts, E.A., Delgado, M.A., Dinkins, C., Zhao, Z., Virgin, H.W., Kyei, G.B. et al. (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329-341.
Reddy, P.V., Puri, R.V., Khera, A. and Tyagi, A.K. (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194, 567-575.
Rodriguez, G.M. (2006) Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 14, 320-327.
Rodriguez, G.M. and Smith, I. (2003) Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47, 1485-1494.
Rodriguez, G.M., Voskuil, M.I., Gold, B., Schoolnik, G.K. and Smith, I. (2002) ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70, 3371-3381.
Roux, A.L., Viljoen, A., Bah, A., Simeone, R., Bernut, A., Laencina, L., Deramaudt, T., Rottman, M. et al. (2016) The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 6.
Sharma, D., Kumar, B., Lata, M., Joshi, B., Venkatesan, K., Shukla, S. and Bisht, D. (2015) Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoS ONE 10, e0139414.
Watson, R.O., Manzanillo, P.S. and Cox, J.S. (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815.
Grant Information:
2017/24832-6 Fundação de Amparo à Pesquisa do Estado de São Paulo; 302660/2015-1 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 302974/2017-2 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 88887.364940/2019-00 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Universidade Federal de Goiás
Contributed Indexing:
Keywords: bacterioferritin; ferritin; iron homeostasis; nutritional immunity; pathogenicity; virulence
Substance Nomenclature:
0 (Bacterial Proteins)
0 (Cytochrome b Group)
0 (Recombinant Proteins)
9007-73-2 (Ferritins)
9035-38-5 (bacterioferritin)
Entry Date(s):
Date Created: 20200125 Date Completed: 20200821 Latest Revision: 20200821
Update Code:
20240104
DOI:
10.1111/jam.14585
PMID:
31975455
Czasopismo naukowe
Aims: The importance of bacterioferritin in the virulence and pathogenicity of the genus Mycobacterium is still unclear. The aim of this study was to analyse if the expression of a recombinant bacterioferritin from M. tuberculosis (Mtb) by Mycma could improve the capacity of this bacillus to resist the host defence mechanisms.
Methods and Results: Recombinant Mycma, expressing bacterioferritin (Rv1876) from Mtb, was developed by transformation with pMIP12_Rv1876. To determine bacterioferritin influence on Mycma physiology and virulence, the mycobacteria growth was analysed in vitro and in vivo. It was observed that the expression of bacterioferritin improved the growth rate of recombinant Mycma_BfrA under iron excess and oxidative stress, as compared to the wild type. Furthermore, in the murine model of infection, it was observed that Mycma_BfrA-infected mice had higher bacillary load and a more pronounced lesion in the lungs when compared with the wild type.
Conclusion: This study showed that bacterioferritin confers additional resistance to stress conditions, resulting in increased pathogenicity of Mycma during mice infection.
Significance and Impact of the Study: This study provides new insights about the importance of bacterioferritin in the virulence and pathogenicity of the Mycobacterium genus.
(© 2020 The Society for Applied Microbiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies