Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells.

Tytuł:
Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells.
Autorzy:
Qin XY; Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan. .
Su T; Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.; Department of Intensive Care Unit, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
Yu W; Department of Intensive Care Unit, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
Kojima S; Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
Źródło:
Cell death & disease [Cell Death Dis] 2020 Jan 27; Vol. 11 (1), pp. 66. Date of Electronic Publication: 2020 Jan 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : Nature Pub. Group
MeSH Terms:
Carcinoma, Hepatocellular/*metabolism
Endoplasmic Reticulum Stress/*genetics
Fatty Acids, Unsaturated/*metabolism
Liver Neoplasms/*metabolism
N-Myc Proto-Oncogene Protein/*metabolism
Activating Transcription Factor 3/genetics ; Activating Transcription Factor 3/metabolism ; Carcinoma, Hepatocellular/genetics ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cell Proliferation/genetics ; Chromatography, Liquid ; Endoplasmic Reticulum Stress/drug effects ; Fatty Acids, Unsaturated/chemistry ; Gene Expression Regulation, Neoplastic/drug effects ; Gene Expression Regulation, Neoplastic/genetics ; Humans ; Liver Neoplasms/genetics ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Metabolome ; N-Myc Proto-Oncogene Protein/genetics ; Neoplastic Stem Cells/metabolism ; Organoids/drug effects ; Organoids/metabolism ; RNA, Small Interfering ; RNA-Seq ; Signal Transduction/drug effects ; Signal Transduction/genetics ; Stearoyl-CoA Desaturase/antagonists & inhibitors ; Tretinoin/analogs & derivatives ; Tretinoin/metabolism ; Tretinoin/pharmacology
References:
Pikarsky, E. et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004). (PMID: 1532973410.1038/nature02924)
Venook, A. P., Papandreou, C., Furuse, J. & de Guevara, L. L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15(Suppl 4), 5–13 (2010). (PMID: 2111557610.1634/theoncologist.2010-S4-05)
El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264–1273 e1261 (2012). (PMID: 3338949333894910.1053/j.gastro.2011.12.061)
Hosaka, T. et al. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology 58, 98–107 (2013). (PMID: 2321304010.1002/hep.26180)
Singal, A. K. et al. Antiviral therapy reduces risk of hepatocellular carcinoma in patients with hepatitis C virus-related cirrhosis. Clin. Gastroenterol. Hepatol. 8, 192–199 (2010). (PMID: 1987997210.1016/j.cgh.2009.10.026)
Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003). (PMID: 1271173710.1056/NEJMoa021423)
Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014). (PMID: 25132496416561110.1016/j.ccr.2014.07.001)
Starley, B. Q., Calcagno, C. J. & Harrison, S. A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51, 1820–1832 (2010). (PMID: 2043225910.1002/hep.23594)
Calvisi, D. F. et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140, 1071–1083 (2011). (PMID: 2114711010.1053/j.gastro.2010.12.006)
Carroll, P. A. et al. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 27, 271–285 (2015). (PMID: 25640402432660510.1016/j.ccell.2014.11.024)
Dang, C. V. Web of the extended Myc network captures metabolism for tumorigenesis. Cancer Cell 27, 160–162 (2015). (PMID: 2567007710.1016/j.ccell.2015.01.004)
Ma, C. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016). (PMID: 26934227478646410.1038/nature16969)
Li, J. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314 e305 (2017). (PMID: 2804189410.1016/j.stem.2016.11.004)
Charni, M., Aloni-Grinstein, R., Molchadsky, A. & Rotter, V. p53 on the crossroad between regeneration and cancer. Cell Death Differ. 24, 8–14 (2017). (PMID: 2776812110.1038/cdd.2016.117)
Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997). (PMID: 908298610.1126/science.276.5309.60)
Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012). (PMID: 22464321334519210.1016/j.cell.2012.03.003)
Qu, A. et al. Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. J. Hepatol. 60, 331–338 (2014). (PMID: 2409605110.1016/j.jhep.2013.09.024)
Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003). (PMID: 1261265510.1038/nrc1014)
Qin, X. Y. et al. Transcriptome analysis uncovers a growth-promoting activity of orosomucoid-1 on hepatocytes. EBioMedicine 24, 257–266 (2017). (PMID: 28927749565200610.1016/j.ebiom.2017.09.008)
Qin, X. Y. et al. Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proc. Natl Acad. Sci. USA 115, 4969–4974 (2018). (PMID: 2968606110.1073/pnas.1802279115)
Muto, Y. et al. Prevention of second primary tumors by an acyclic retinoid, polyprenoic acid, in patients with hepatocellular carcinoma. Hepatoma Prevention Study Group. N. Engl. J. Med. 334, 1561–1567 (1996). (PMID: 862833610.1056/NEJM199606133342402)
Qin, X. Y., Dohmae, N. & Kojima, S. Reply to Yoshida: Liver cancer stem cells: Identification and lipid metabolic reprogramming. Proc. Natl Acad. Sci. USA 115, E6390–E6391 (2018). (PMID: 2994160710.1073/pnas.180874011529941607)
Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013). (PMID: 2348776010.1073/pnas.121761111023487760)
Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e296 (2018). (PMID: 29625048595751810.1016/j.cell.2018.03.022)
Miyajima, A., Tanaka, M. & Itoh, T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561–574 (2014). (PMID: 2479211410.1016/j.stem.2014.04.010)
Yamashita, T. et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology 57, 1484–1497 (2013). (PMID: 2317490710.1002/hep.26168)
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012). (PMID: 22460905332002710.1038/nature11003)
Qin, X. Y. & Kojima, S. Inhibition of stearoyl-CoA desaturase-1 activity suppressed SREBP signaling in colon cancer cells and their spheroid growth. Gastrointest. Disord. 1, 191–200 (2019). (PMID: 10.3390/gidisord1010014)
Varga, J. & Greten, F. R. Cell plasticity in epithelial homeostasis and tumorigenesis. Nat. Cell Biol. 19, 1133–1141 (2017). (PMID: 2894523010.1038/ncb3611)
Chen, B. P., Liang, G., Whelan, J. & Hai, T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J. Biol. Chem. 269, 15819–15826 (1994). (PMID: 7515060)
Qin, X. Y. et al. Metabolome analyses uncovered a novel inhibitory effect of acyclic retinoid on aberrant lipogenesis in a mouse diethylnitrosamine-induced hepatic tumorigenesis model. Cancer Prev. Res. 9, 205–214 (2016). (PMID: 10.1158/1940-6207.CAPR-15-0326)
Morrish, F. et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle Entry. J. Biol. Chem. 285, 36267–36274 (2010). (PMID: 20813845297855410.1074/jbc.M110.141606)
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010). (PMID: 20141834283692210.1016/j.cell.2009.12.052)
Niu, J. et al. Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation through S-palmitoylation. Nature 573, 139–143 (2019). (PMID: 3146277110.1038/s41586-019-1511-x)
Yi, M. et al. Emerging role of lipid metabolism alterations in cancer stem cells. J. Exp. Clin. Cancer Res. 37, 118 (2018). (PMID: 29907133600304110.1186/s13046-018-0784-5)
Lai, K. K. Y. et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a WNT positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 152, 1477–1491 (2017). (PMID: 28143772540624910.1053/j.gastro.2017.01.021)
Pisanti, S., Picardi, P., D’Alessandro, A., Laezza, C. & Bifulco, M. The endocannabinoid signaling system in cancer. Trends Pharmacol. Sci. 34, 273–282 (2013). (PMID: 2360212910.1016/j.tips.2013.03.003)
Guzman, M., Galve-Roperh, I. & Sanchez, C. Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol. Sci. 22, 19–22 (2001). (PMID: 1116566710.1016/S0165-6147(00)01586-8)
Mukhopadhyay, B. et al. Transcriptional regulation of cannabinoid receptor-1 expression in the liver by retinoic acid acting via retinoic acid receptor-gamma. J. Biol. Chem. 285, 19002–19011 (2010). (PMID: 20410309288517710.1074/jbc.M109.068460)
Borradaile, N. M. et al. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 47, 2726–2737 (2006). (PMID: 1696026110.1194/jlr.M600299-JLR200)
Ariyama, H., Kono, N., Matsuda, S., Inoue, T. & Arai, H. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem. 285, 22027–22035 (2010). (PMID: 20489212290336410.1074/jbc.M110.126870)
Liu, L. et al. Adaptive endoplasmic reticulum stress signalling via IRE1alpha-XBP1 preserves self-renewal of haematopoietic and pre-leukaemic stem cells. Nat. Cell Biol. 21, 328–337 (2019). (PMID: 30778220674570310.1038/s41556-019-0285-6)
Miharada, K., Sigurdsson, V. & Karlsson, S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep. 7, 1381–1392 (2014). (PMID: 2488200210.1016/j.celrep.2014.04.056)
Heijmans, J. et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep. 3, 1128–1139 (2013). (PMID: 2354549610.1016/j.celrep.2013.02.031)
Wielenga, M. C. B. et al. ER-stress-induced differentiation sensitizes colon cancer stem cells to chemotherapy. Cell Rep. 13, 489–494 (2015). (PMID: 2645682410.1016/j.celrep.2015.09.016)
Ma, M. K. F. et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. J. Hepatol. 67, 979–990 (2017). (PMID: 2864756710.1016/j.jhep.2017.06.015)
Dor, I., Namba, M. & Sato, J. Establishment and some biological characteristics of human hepatoma cell lines. Gan 66, 385–392 (1975). (PMID: 52570)
Fujise, K. et al. Integration of hepatitis B virus DNA into cells of six established human hepatocellular carcinoma cell lines. Hepatogastroenterology 37, 457–460 (1990). (PMID: 1701409)
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012). (PMID: 2258887710.1158/2159-8290.CD-12-0095)
Xia, J. G. & Wishart, D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010). (PMID: 2062807710.1093/bioinformatics/btq418)
Gil, M., Samino, S., Barrilero, R. & Correig, X. Lipid profiling using (1)H NMR spectroscopy. Methods Mol. Biol. 2037, 35–47 (2019). (PMID: 3146383810.1007/978-1-4939-9690-2_3)
Substance Nomenclature:
0 (ATF3 protein, human)
0 (Activating Transcription Factor 3)
0 (Fatty Acids, Unsaturated)
0 (MYCN protein, human)
0 (N-Myc Proto-Oncogene Protein)
0 (RNA, Small Interfering)
5688UTC01R (Tretinoin)
81485-25-8 (3,7,11,15-tetramethyl-2,4,6,10,14-hexadecapentaenoic acid)
EC 1.14.19.1 (SCD1 protein, human)
EC 1.14.19.1 (Stearoyl-CoA Desaturase)
Entry Date(s):
Date Created: 20200129 Date Completed: 20201001 Latest Revision: 20210126
Update Code:
20240105
PubMed Central ID:
PMC6985230
DOI:
10.1038/s41419-020-2257-y
PMID:
31988297
Czasopismo naukowe
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide due to its high rate of recurrence, in part because of cancer stem cell (CSC)-dependent "field cancerization". Recently, we identified that the oncogene v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) marked CSC-like subpopulations in heterogeneous HCC and served as a therapeutic target and prognostic marker for HCC. In this study, we explored the molecular basis of upregulated MYCN gene expression in HCC cells. Liquid chromatograph time-of-flight mass spectrometry-based metabolome analysis demonstrated that the content of unsaturated fatty acids was increased in MYCN high expression (MYCN high ) CSC-like HCC cells. Inhibition of lipid desaturation using either the chemical inhibitor or siRNA/shRNA against stearoyl-CoA desaturase-1 (SCD1) suppressed cell proliferation as well as MYCN gene expression in MYCN high HCC cells, grown as both monolayer and spheres. Further mechanistic study using RNA-seq based transcriptome analysis revealed that endoplasmic reticulum (ER) stress related signaling networks such as endocannabinoid cancer inhibition pathway were under the control of SCD1 in MYCN high HCC cells. Furthermore, the expression of ER stress-inducible transcription suppressor cyclic AMP-dependent transcription factor (ATF3) was downregulated in MYCN high CSC-like HCC cells and CSC-rich spheroids, which was upregulated by inhibition of lipid desaturation or treatment with acyclic retinoid (ACR). Lipid profiling using NMR spectroscopy revealed that the ACR dramatically reduced the content of unsaturated fatty acids in HCC cells. The chemical inducer of ER stress inhibited MYCN gene expression, while the chemical inhibitor of ER stress or knockdown of ATF3 gene expression partially rescued the suppression of MYCN gene expression by ACR in MYCN high HCC cells. These data suggested that lipid desaturation-mediated ER stress signaling regulates MYCN gene expression in HCC cells and serves as a promising therapeutic target for the treatment and prevention of HCC.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies