Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Radiosensitivity increase in FCV-F9 virus using combined treatments with natural antimicrobials and γ-irradiation.

Tytuł:
Radiosensitivity increase in FCV-F9 virus using combined treatments with natural antimicrobials and γ-irradiation.
Autorzy:
Gobeil A; INRS-Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences, Applied to Food, Nutraceutical Institute and Functional Foods, Canadian Irradiation Centre, Laval, QC, Canada.
Shankar S; INRS-Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences, Applied to Food, Nutraceutical Institute and Functional Foods, Canadian Irradiation Centre, Laval, QC, Canada.
Lacroix M; INRS-Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences, Applied to Food, Nutraceutical Institute and Functional Foods, Canadian Irradiation Centre, Laval, QC, Canada.
Źródło:
Journal of applied microbiology [J Appl Microbiol] 2020 Jun; Vol. 128 (6), pp. 1534-1546. Date of Electronic Publication: 2020 Feb 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2022- : Oxford : Oxford University Press
Original Publication: Oxford : Published for the Society for Applied Bacteriology by Blackwell Science, c1997-
MeSH Terms:
Gamma Rays*
Antiviral Agents/*pharmacology
Calicivirus, Feline/*physiology
Food Irradiation/*methods
Radiation Tolerance/*drug effects
Calicivirus, Feline/drug effects ; Calicivirus, Feline/radiation effects ; Citrus/chemistry ; Dose-Response Relationship, Drug ; Dose-Response Relationship, Radiation ; Food Safety ; Vaccinium macrocarpon/chemistry
References:
Aboubakr, H.A., El-Banna, A.A., Youssef, M.M., Al-Sohaimy, S.A. and Goyal, S.M. (2014) Antiviral effects of Lactococcus lactis on feline calicivirus, a human norovirus surrogate. Food Environ Virol 6, 282-289.
Aquino, S. (2011) Gamma radiation against toxigenic fungi in food, medicinal and aromatic herbs. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances ed. Mendez-Vilas, A. pp. 272-281. Badajoz: Formatex Research Center.
Assemand, E., Lacroix, M. and Mateescu, M.A. (2003) Caeruloplasmin sterilized by γ-irradiation in the presence of l-tyrosine maintains structural and catalytic characteristics. Biotechnol Appl Biochem 38, 143-149.
Bahadoran, Z., Mirmiran, P. and Azizi, F. (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disorders 12, 43.
Bidawid, S., Farber, J.M. and Sattar, S.A. (2000) Inactivation of hepatitis A virus (HAV) in fruits and vegetables by gamma irradiation. Int J Food Microbiol 57, 91-97.
Brié, A., Razafimahefa, R., Loutreul, J., Robert, A., Gantzer, C., Boudaud, N. and Bertrand, I. (2017) The effect of heat and free chlorine treatments on the surface properties of murine norovirus. Food Environ Virol 9, 149-158.
Buckow, R., Isbarn, S., Knorr, D., Heinz, V. and Lehmacher, A. (2008) Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure. Appl Environ Microbiol 74, 1030-1038.
Caillet, S., Côté, J., Doyon, G., Sylvain, J.F. and Lacroix, M. (2011) Antioxidant and antiradical properties of cranberry juice and extracts. Food Res Int 44, 1408-1413.
Cannon, J.L., Papafragkou, E., Park, G.W., Osborne, J., Jaykus, L.A. and Vinjé, J. (2006) Surrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J Food Prot 69, 2761-2765.
Cao, C. (2013). Chemical Disinfectants for Inactivation of Human Norovirus Surrogates. Master's Thesis, University of Tennessee, Tennessee.
Centers for Disease and Prevention (CDC) (2018a). Burden of foodborne illness: findings. Available at: https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (1st December of 2019).
Centers for Disease and Prevention (CDC) (2018b). Burden of norovirus illness in the U.S. Available at: https://www.cdc.gov/norovirus/trends-outbreaks/burden-US.html (1st December of 2019).
Cheesbrough, J.S., Green, J., Gallimore, C.I., Wright, P.A. and Brown, D.W.G. (2000) Widespread environmental contamination with Norwalk-like viruses (NLV) detected in a prolonged hotel outbreak of gastroenteritis. Epidemiol Infect 125, 93-98.
Ciesek, S., von Hahn, T., Colpitts, C.C., Schang, L.M., Friesland, M., Steinmann, J., Manns, M.P., Ott, M. et al. (2011) The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 54, 1947-1955.
Coppola, E.D., Conrad, E.C. and Cotter, R. (1978) High pressure liquid chromatographic determination of major organic acids in cranberry juice. J Assoc Off Anal Chem 61, 1490-1492.
Côté, J., Caillet, S., Doyon, G., Sylvain, J.F. and Lacroix, M. (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50, 666-679.
Côté, J., Caillet, S., Doyon, G., Dussault, D., Sylvain, J.-F. and Lacroix, M. (2011) Antimicrobial effect of cranberry juice and extracts. Food Control 22, 1413-1418.
D’Souza, D.H. (2014) Phytocompounds for the control of human enteric viruses. Curr Opin Virol 4, 44-49.
Diehl, J.F. (1992) Food irradiation: is it an alternative to chemical preservatives? Food Addit Contam 9, 409-416.
Fankhauser, R.L., Monroe, S.S., Noel, J.S., Humphrey, C.D., Bresee, J.S., Parashar, U.D., Glass, R.I. (2002) Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. J Infect Dis 186, 1-7.
Feng, K., Divers, E., Ma, Y. and Li, J. (2011) Inactivation of a human norovirus surrogate, human norovirus virus-like particles, and vesicular stomatitis virus by gamma irradiation. Appl Environ Microbiol 77, 3507-3517.
Gibson, K.E. and Schwab, K.J. (2011) Thermal inactivation of human norovirus surrogates. Food Environ Virol 3, 74-77.
Gilling, D.H., Kitajima, M., Torrey, J.R. and Bright, K.R. (2014) Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl Environ Microbiol 80, 4898-4910.
Hirneisen, K.A., Markland, S.M. and Kniel, K.E. (2011) Ozone inactivation of norovirus surrogates on fresh produce. J Food Prot 74, 836-839.
Husman, A.M.D., Bijkerk, P., Lodder, W., van den Berg, H., Pribil, W., Cabaj, A., Gehringer, P., Sommer, R. et al. (2004) Calicivirus inactivation by nonionizing (253.7-nanometer-wavelength [UV]) and ionizing (Gamma) radiation. Appl Environ Microbiol 70, 5089-5093.
Jariwalla, R.J. and Harakeh, S. (1996) Antiviral and immunomodulatory activities of ascorbic acid. Subcell Biochem 215-231.
Joshi, S.S., Howell, A.B. and D’Souza, D.H. (2019) Antiviral effects of blueberry proanthocyanidins against Aichi virus. Food Microbiol 82, 202-208.
Jung, P.M., Park, J.S., Park, J.G., Park, J.N., Han, I.J., Song, B.S., Choi, J.I., Kim, J.H. et al. (2009) Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster (Crassostrea gigas) and culture broth under different conditions. Radiat Phys Chem 78, 597-599.
Jungeblut, C.W. (1935) Inactivation of poliomyelitis virus in vitro by crystalline vitamin c (ascorbic acid). J Exp Med 62, 517-521.
Kang, S., Park, S.Y. and Ha, S.D. (2016) Application of gamma irradiation for the reduction of norovirus in traditional Korean half-dried seafood products during storage. LWT Food Sci Technol 65, 739-745.
Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M. and Tai, T.C. (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779-3827.
Kim, H.W., Chung, D.H., Kim, S.A. and Rhee, M.S. (2019) Synergistic cranberry juice combinations with natural-borne antimicrobials for the eradication of uropathogenic Escherichia coli biofilm within a short time. Lett Appl Microbiol 68, 321-328.
Kuusi, M., Nuorti, J.P., Maunula, L., Minh, N.T., Ratia, M., Karlsson, J. and Von Bonsdorff, C.H. (2002) A prolonged outbreak of Norwalk-like calicivirus (NLV) gastroenteritis in a rehabilitation centre due to environmental contamination. Epidemiol Infect 129, 133-138.
Lacroix, M. and Ouattara, B. (2000) Combined industrial processes with irradiation to assure innocuity and preservation of food products-a review. Food Res Int 33, 719-724.
Lee, M.H., Yoo, S.H., Ha, S.D. and Choi, C. (2012) Inactivation of feline calicivirus and murine norovirus during Dongchimi fermentation. Food Microbiol 31, 210-214.
Li, D., Baert, L. and Uyttendaele, M. (2013) Inactivation of food-borne viruses using natural biochemical substances. Food Microbiol 35, 1-9.
Lin, C., Yu, Y., Zhao, H.G., Yang, A., Yan, H. and Cui, Y. (2012) Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol 104, 395-400.
Lipson, S.M., Gordon, R.E., Kathikeyan, L., Singh, M., Burdowski, A., Roy, M. and Stotzky, G. (2010) Cranberry and grape juice drinks affect infectivity, integrity, and pathology of enteric viruses in an animal model. flavor and health benefits of small fruits. J Am Chem Soc 1035, 177-195.
Liu, Y., Gallardo-Moreno, A.M., Pinzon-Arango, P.A., Reynolds, Y., Rodriguez, G. and Camesano, T.A. (2008) Cranberry changes the physicochemical surface properties of E. coli and adhesion with uroepithelial cells. Colloids Surf B Biointerfaces 65, 35-42.
Lopman, B., Gastanaduy, P., Park, G.W., Hall, A.J., Parashar, U.D. and Vinjé, J. (2012) Environmental transmission of norovirus gastroenteritis. Curr Opin Virol 2, 96-102.
Macinga, D.R., Sattar, S.A., Jaykus, L.A. and Arbogast, J.W. (2008) Improved inactivation of nonenveloped enteric viruses and their surrogates by a novel alcohol-based hand sanitizer. Appl Environ Microbiol 74, 5047-5052.
Maki, K.C., Kaspar, K.L., Khoo, C., Derrig, L.H., Schild, A.L. and Gupta, K. (2016) Consumption of a cranberry juice beverage lowered the number of clinical urinary tract infection episodes in women with a recent history of urinary tract infection. Am J Clin Nutr 103, 1434-1442.
Maki, K.C., Nieman, K.M., Schild, A.L., Kaspar, K.L. and Khoo, C. (2018) The effect of cranberry juice consumption on the recurrence of urinary tract infection: relationship to baseline risk factors. J Am Coll Nutr 37, 121-126.
Methot, Y., Essler-Gravesen, D. and Talbot, J. (2017) Citrus-based antimicrobial composition. US Patent 2017/0079281 A1.
Monk, J.D., Beuchat, L.R. and Doyle, M.P. (1995) Irradiation inactivation of food-borne microorganisms. J Food Prot 58, 197-208.
Müller, J.A., Harms, M., Schubert, A., Jansen, S., Michel, D., Mertens, T., Schmidt-Chanasit, J. and Münch, J. (2016) Inactivation and environmental stability of Zika virus. Emerg InfectDis 22, 1685-1687.
Narumi, I., Satoh, K., Cui, S., Funayama, T., Kitayama, S. and Watanabe, H. (2004) PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54, 278-285.
Oh, M., Bae, S.Y., Lee, J.H., Cho, K.J., Kim, K.H. and Chung, M.S. (2012) Antiviral effects of black raspberry (Rubus coreanus) juice on foodborne viral surrogates. Foodborne Pathog Dis 9, 915-921.
Park, S.Y. and Ha, S.D. (2017) Application of gamma radiation for the reduction of norovirus and the quality stability in optimally ripened cabbage kimchi. Food Res Int 100, 277-281.
Pinzón-Arango, P.A., Liu, Y. and Camesano, T.A. (2009) Role of cranberry on bacterial adhesion forces and implications for Escherichia coli-uroepithelial cell attachment. J Med Food 12, 259-270.
de Roda Husman, A.M., Bijkerk, P., Lodder, W., Van Den Berg, H., Pribil, W., Cabaj, A., Gehringer, P., Sommer, R. et al. (2004) Calicivirus inactivation by nonionizing (253.7-nanometer-wavelength [UV]) and ionizing (gamma) radiation. Appl Environ Microbiol 70, 5089-5093.
Seo, D.J. and Choi, C. (2017) Inhibitory mechanism of five natural flavonoids against murine norovirus. Phytomedicine 30, 59-66.
Severino, R., Ferrari, G., Vu, K.D., Donsì, F., Salmieri, S. and Lacroix, M. (2015) Antimicrobial effects of modified chitosan-based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food Control 50, 215-222.
Sharma, M., Shearer, A.E.H., Hoover, D.G., Liu, M.N., Solomon, M.B. and Kniel, K.E. (2008) Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses. Innovative Food Sci Emerg Technol 9, 418-422.
Silverman, G.J. and Sinskey, T.J. (1968). The destruction of microorganisms by ionizing irradiation. In Disinfection, Sterilization and Preservation ed. Lawrence, C.A. and Block, S.S. pp. 741-760. Philadelphia: Lea and Febiger.
Sommers, C.H. and Fan, X. (2002) Antioxidant power, lipid oxidation, color, and viability of Listeria monocytogenes in beef bologna treated with gamma radiation and containing various levels of glucose. J Food Prot 65, 1750-1755.
Su, X. and D'Souza, D.H. (2011) Grape seed extract for control of human enteric viruses. Appl Environ Microbiol 77, 3982-3987.
Su, X., Howell, A.B. and D’Souza, D.H. (2010) Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates-a time dependence study in vitro. Food Microbiol 27, 985-991.
Suzuki, M., Sasaki, K., Yoshizaki, F., Fujisawa, M., Oguchi, K. and Cyong, J.C. (2005) Anti-hepatitis C virus effect of citrus unshiu peel and its active ingredient nobiletin. Am J Chin Med 33, 87-94.
Thornley, M.J. (1963) Radiation resistance among bacteria. J Appl Bacteriol 26, 334-345.
Tsen, S.W.D., Chapa, T., Beatty, W., Tsen, K.T., Yu, D. and Achilefu, S. (2012) Inactivation of enveloped virus by laser-driven protein aggregation. J Biomed Opt 17, 128002.
Whitehead, K. and McCue, K.A. (2010) Virucidal efficacy of disinfectant actives against feline calicivirus, a surrogate for norovirus, in a short contact time. Am J Infect Control 38, 26-30.
Widdowson, M.A., Cramer, E.H., Hadley, L., Bresee, J.S., Beard, R.S., Bulens, S.N., Charles, M., Chege, W. et al. (2004) Outbreaks of acute gastroenteritis on cruise ships and on land: identification of a predominant circulating strain of norovirus-United States, 2002. J Infect Dis 190, 27-36.
Zhang, X.F., Dai, Y.C., Zhong, W., Tan, M., Lv, Z.P., Zhou, Y.C. and Jiang, X. (2012) Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs. Bioorg Med Chem 20, 1616-1623.
Zhao, S., Liu, H. and Gu, L. (2018) American cranberries and health benefits-an evolving story of 25 years. J Sci Food Agric 10, 1002.
Grant Information:
code F23033 CRP- Radiation Inactivation of Biohazards; Natural Sciences and Engineering Research Council of Canada; International Atomic Energy Agency
Contributed Indexing:
Keywords: antimicrobials; food safety; nonthermal processes; postharvest; viruses
Substance Nomenclature:
0 (Antiviral Agents)
Entry Date(s):
Date Created: 20200129 Date Completed: 20200731 Latest Revision: 20200731
Update Code:
20240105
DOI:
10.1111/jam.14596
PMID:
31991509
Czasopismo naukowe
Aims: The objective was to evaluate the possible synergistic effect of cranberry juice (CJ) and commercial citrus extract (BS) against FCV-F9 viral titre in vitro in combination with γ-irradiation and to determinate the D 10 values and radiosensitivity increase.
Methods and Results: Virus samples were treated with a formulation containing a mixture of BS or CJ. Results showed a D 10 of 0·05, 0·42% and 1·34 kGy for the virus treated with the BS, the CJ and the irradiation alone respectively. Concentrations needed to reduce 6 log TCID 50  ml -1 of viral titre were BS-0·3%, CJ-2·52% and 8·04 kGy. Irradiation combined with BS-0·01% and CJ-0·1% against FCV-F9 virus showed D 10 values of 0·74 and 0·72 kGy, respectively, resulting in a viral radiosensitization of 1·28 and 1·50 for respective treatments.
Conclusion: The higher viral radiosensitization observed after combining γ-irradiation with BS-0·01% and CJ-0·1% indicates that CJ and BS could be used as antiviral agents alone or in combination with γ-irradiation to prevent NoV outbreaks.
Significance and Impact of the Study: Cranberry juice and BS could be used in hurdle approaches in combined treatment with γ-irradiation to assure food safety without a detrimental effect on nutritional value and maintain low processing cost.
(© 2020 The Society for Applied Microbiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies