Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Preclinical development of a miR-132 inhibitor for heart failure treatment.

Tytuł:
Preclinical development of a miR-132 inhibitor for heart failure treatment.
Autorzy:
Foinquinos A; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Batkai S; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.; CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, 30625, Hannover, Germany.
Genschel C; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.; CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, 30625, Hannover, Germany.
Viereck J; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.; CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, 30625, Hannover, Germany.
Rump S; CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, 30625, Hannover, Germany.
Gyöngyösi M; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Traxler D; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Riesenhuber M; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Spannbauer A; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Lukovic D; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Weber N; Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Zlabinger K; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Hašimbegović E; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Winkler J; Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Fiedler J; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Dangwal S; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Fischer M; Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
de la Roche J; Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Wojciechowski D; Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Kraft T; Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Garamvölgyi R; Department of Diagnostic Imaging and Oncoradiology, University of Kaposvár, Guba S. Street 40, Kaposvár, 7400, Hungary.
Neitzel S; Axolabs GmbH, Fritz-Hornschuch-Straße 9, 95326, Kulmbach, Germany.
Chatterjee S; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Yin X; The James Black Centre, King's College, University of London, 125 Coldharbour Lane, London, SE5 9NU, UK.
Bär C; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Mayr M; The James Black Centre, King's College, University of London, 125 Coldharbour Lane, London, SE5 9NU, UK.
Xiao K; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Thum T; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .; CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, 30625, Hannover, Germany. .; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .
Źródło:
Nature communications [Nat Commun] 2020 Jan 31; Vol. 11 (1), pp. 633. Date of Electronic Publication: 2020 Jan 31.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Genetic Therapy/*methods
Heart Failure/*genetics
Heart Failure/*therapy
MicroRNAs/*genetics
Oligonucleotides, Antisense/*genetics
Animals ; Drug Evaluation, Preclinical ; Female ; Gene Expression Regulation ; Heart Failure/metabolism ; Humans ; MicroRNAs/metabolism ; Myocytes, Cardiac/metabolism ; Oligonucleotides, Antisense/metabolism ; Oligonucleotides, Antisense/pharmacokinetics ; Swine
References:
Kumarswamy, R. & Thum, T. Non-coding RNAs in cardiac remodeling and heart failure. Circ. Res. 113, 676–689 (2013). (PMID: 10.1161/CIRCRESAHA.113.300226)
Ucar, A. et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3, 1078 (2012). (PMID: 10.1038/ncomms2090)
Thum, T. et al. MicroRNAs in the human heart. Circulation 116, 258–267 (2007). (PMID: 10.1161/CIRCULATIONAHA.107.687947)
Kaprielian, R. et al. Relationship between K+ channel down-regulation and [Ca2+]i in rat ventricular myocytes following myocardial infarction. J. Physiol. 517(Pt 1), 229–245 (1999). (PMID: 10.1111/j.1469-7793.1999.0229z.x)
Wang, Y. & Hill, J. A. Electrophysiological remodeling in heart failure. J. Mol. Cell. Cardiol. 48, 619–632 (2010). (PMID: 10.1016/j.yjmcc.2010.01.009)
Beuckelmann, D. J., Näbauer, M. & Erdmann, E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85, 1046–1055 (1992). (PMID: 10.1161/01.CIR.85.3.1046)
Gwathmey, J. K. et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ. Res. 61, 70–76 (1987). (PMID: 10.1161/01.RES.61.1.70)
Mørk, H. K., Sjaastad, I., Sejersted, O. M. & Louch, W. E. Slowing of cardiomyocyte Ca2+ release and contraction during heart failure progression in postinfarction mice. Am. J. Physiol. Heart Circ. Physiol. 296, H1069–H1079 (2009). (PMID: 10.1152/ajpheart.01009.2008)
Bøkenes, J. et al. Slow contractions characterize failing rat hearts. Basic Res. Cardiol. 103, 328–344 (2008). (PMID: 10.1007/s00395-008-0719-y)
Litwin, S. E., Zhang, D. & Bridge, J. H. Dyssynchronous Ca(2+) sparks in myocytes from infarcted hearts. Circ. Res. 87, 1040–1047 (2000). (PMID: 10.1161/01.RES.87.11.1040)
Louch, W. E. et al. T-tubule disorganization and reduced synchrony of Ca release in murine cardiomyocytes following myocardial infarction. J. Physiol. 574, 519–533 (2006). (PMID: 10.1113/jphysiol.2006.107227)
Lyon, A. R. et al. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc. Natl Acad. Sci. USA 106, 6854–6859 (2009). (PMID: 10.1073/pnas.0809777106)
Wahlquist, C. et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508, 531–535 (2014). (PMID: 10.1038/nature13073)
Janssen, H. L. A. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013). (PMID: 10.1056/NEJMoa1209026)
Levin, A. A., Yu, R. Z., Geary, R. S., Yu, R. Z. & Geary, R. S. Basic principles of the pharmacokinetics of antisense oligonucleotide drugs. 201–234. https://doi.org/10.1201/9780849387951-14 (2007).
Chow, S. L. et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement from the American Heart Association. Circulation 135, e1054–e1091 (2017).
Gao, C. et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J. Clin. Invest. 126, 195–206 (2015). (PMID: 10.1172/JCI84015)
O’Connell, T. D., Rodrigo, M. C. & Simpson, P. C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol. Biol. 357, 271–296 (2007). (PMID: 17172694)
Barry, P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Methods 51, 107–116 (1994). (PMID: 10.1016/0165-0270(94)90031-0)
Kempf, H. et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep. 3, 1132–1146 (2014). (PMID: 10.1016/j.stemcr.2014.09.017)
Arias-Hidalgo, M. et al. CO2 permeability and carbonic anhydrase activity of rat cardiomyocytes. Acta Physiol. 221, 115–128 (2017). (PMID: 10.1111/apha.12887)
Mutig, N. et al. Lipoteichoic acid from Staphylococcus aureus directly affects cardiomyocyte contractility and calcium transients. Mol. Immunol. 56, 720–728 (2013). (PMID: 10.1016/j.molimm.2013.07.007)
Weber, N. et al. Stiff matrix induces switch to pure β-cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic Res. Cardiol. 111, 68 (2016). (PMID: 10.1007/s00395-016-0587-9)
Layland, J. et al. Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically. J. Physiol. 556, 835–847 (2004). (PMID: 10.1113/jphysiol.2004.061176)
Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008). (PMID: 10.1038/nature07511)
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). (PMID: 10.1093/nar/gkw377)
Haase, A. et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5, 434–441 (2009). (PMID: 10.1016/j.stem.2009.08.021)
Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013). (PMID: 10.1038/nprot.2012.150)
Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013). (PMID: 10.1016/j.stem.2012.09.013)
Wani, S. & Cloonan, N. Profiling direct mRNA-microRNA interactions using synthetic biotinylated microRNA-duplexes. Preprint at https://doi.org/10.1101/005439 (2014).
Grant Information:
CH/16/3/32406 United Kingdom BHF_ British Heart Foundation; RG/16/14/32397 United Kingdom BHF_ British Heart Foundation
Substance Nomenclature:
0 (MicroRNAs)
0 (Oligonucleotides, Antisense)
Entry Date(s):
Date Created: 20200202 Date Completed: 20200511 Latest Revision: 20220323
Update Code:
20240105
PubMed Central ID:
PMC6994493
DOI:
10.1038/s41467-020-14349-2
PMID:
32005803
Czasopismo naukowe
Despite proven efficacy of pharmacotherapies targeting primarily global neurohormonal dysregulation, heart failure (HF) is a growing pandemic with increasing burden. Treatments mechanistically focusing at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators and essential drivers of disease progression. We previously demonstrated that miR-132 is both necessary and sufficient to drive the pathological cardiomyocytes growth, a hallmark of adverse cardiac remodelling. Therefore, miR-132 may serve as a target for HF therapy. Here we report further mechanistic insight of the mode of action and translational evidence for an optimized, synthetic locked nucleic acid antisense oligonucleotide inhibitor (antimiR-132). We reveal the compound's therapeutic efficacy in various models, including a clinically highly relevant pig model of HF. We demonstrate favourable pharmacokinetics, safety, tolerability, dose-dependent PK/PD relationships and high clinical potential for the antimiR-132 treatment scheme.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies