Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Changes in microbiome and metabolomic profiles of fecal samples stored with stabilizing solution at room temperature: a pilot study.

Tytuł:
Changes in microbiome and metabolomic profiles of fecal samples stored with stabilizing solution at room temperature: a pilot study.
Autorzy:
Lim MY; Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
Hong S; Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
Kim BM; EZmass Co., Ltd., Gyeongsangnam-do, 52828, Republic of Korea.
Ahn Y; Theragen Etex Bio Institute, Gyeonggi-do, 16229, Republic of Korea.
Kim HJ; EZmass Co., Ltd., Gyeongsangnam-do, 52828, Republic of Korea.; Department of Food Science and Technology, Division of Applied Life Sciences (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongsangnam-do, 52828, Republic of Korea.
Nam YD; Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea. .; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea. .
Źródło:
Scientific reports [Sci Rep] 2020 Feb 04; Vol. 10 (1), pp. 1789. Date of Electronic Publication: 2020 Feb 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Metabolome*
Microbiota*
Feces/*microbiology
Adult ; Female ; Humans ; Male ; Pilot Projects ; Specimen Handling/methods ; Temperature
References:
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). (PMID: 10.1038/nature07540)
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). (PMID: 10.1038/nature11450)
Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). (PMID: 10.1038/nature15766)
Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012). (PMID: 10.1186/gb-2012-13-9-r79)
Caminero, A. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670–683 (2016). (PMID: 10.1053/j.gastro.2016.06.041)
Vogtmann, E. & Goedert, J. J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 114, 237–242 (2016). (PMID: 10.1038/bjc.2015.465)
Martin, F.-P. J. et al. Panorganismal gut microbiome-host metabolic crosstalk. J. Proteome Res. 8, 2090–2105 (2009). (PMID: 10.1021/pr801068x)
Koppel, N. & Balskus, E. P. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 23, 18–30 (2016). (PMID: 10.1016/j.chembiol.2015.12.008)
McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, 1–28 (2018). (PMID: 10.1128/mSystems.00031-18)
Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012). (PMID: 10.1038/nature11234)
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016). (PMID: 10.1126/science.aad3503)
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016). (PMID: 10.1126/science.aad3369)
He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018). (PMID: 10.1038/s41591-018-0164-x)
Choo, J. M., Leong, L. E. X. & Rogers, G. B. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 5, 1–10 (2015). (PMID: 10.1038/srep16350)
Amir, A. et al. Correcting for microbial blooms in fecal samples during room-temperature shipping. mSystems 2, 1–5 (2017).
Hill, C. J. et al. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome 4, 1–10 (2016). (PMID: 10.1186/s40168-016-0164-3)
Tap, J. et al. Effects of the long-term storage of human fecal microbiota samples collected in RNAlater. Sci. Rep. 9, 1–9 (2019). (PMID: 10.1038/s41598-018-36953-5)
Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, 1–12 (2016). (PMID: 10.1128/mSystems.00021-16)
Karu, N. et al. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal. Chim. Acta 1030, 1–24 (2018). (PMID: 10.1016/j.aca.2018.05.031)
Wang, Z. et al. Comparison of fecal collection methods for microbiome and metabolomics studies. Front. Cell. Infect. Microbiol. 8, 301 (2018). (PMID: 10.3389/fcimb.2018.00301)
Pence, H. E. & Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ. 87, 1123–1124 (2010). (PMID: 10.1021/ed100697w)
Lim, M. Y., Song, E.-J., Kim, S. H., Lee, J. & Nam, Y.-D. Comparison of DNA extraction methods for human gut microbial community profiling. Syst. Appl. Microbiol. 41, 151–157 (2018). (PMID: 10.1016/j.syapm.2017.11.008)
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 10.1038/nmeth.3869)
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019). (PMID: 10.1038/s41587-019-0209-9)
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018). (PMID: 10.1186/s40168-018-0470-z)
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006). (PMID: 10.1128/AEM.03006-05)
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference (eds. van der Walt, S. & Millman, J.) 51–56 (2010).
Jones, E., Oliphant, T., Peterson, P. & others. SciPy: Open source scientific tools for Python (2001).
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). (PMID: 10.1109/MCSE.2007.55)
Entry Date(s):
Date Created: 20200206 Date Completed: 20201116 Latest Revision: 20210203
Update Code:
20240105
PubMed Central ID:
PMC7000387
DOI:
10.1038/s41598-020-58719-8
PMID:
32019987
Czasopismo naukowe
The gut microbiome is related to various host health conditions through metabolites produced by microbiota. Investigating their relationships involves association analysis of the population-level microbiome and metabolome data, which requires the appropriate collection, handling, and storage of specimens. Simplification of the specimen handling processes will facilitate such investigations. As a pilot study for population-level studies, we collected the fecal samples from three volunteers and tested whether a single sample collection procedure, particularly using OMNIgene-GUT, can be used to reliably obtain both microbiome and metabolome data. We collected fecal samples from three young and healthy Korean adults, stored them at room temperature with and without OMNIgene-GUT solution up to three weeks, and analyzed their microbiome and metabolite profiles. We found that the microbiome profiles were stably maintained in OMNIgene-GUT solution for 21 days, and the abundance relationships among metabolites were well preserved, although their absolute abundances slightly varied over time. Our results show that a single sampling procedure suffices to obtain a fecal sample for collecting gut microbiome and gut metabolome data of an individual. We expect that the health effects of gut microbiome via fecal metabolites can be further understood by increasing the sampling size to the population level.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies