Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Characterizing lineage-specific evolution and the processes driving genomic diversification in chordates.

Tytuł:
Characterizing lineage-specific evolution and the processes driving genomic diversification in chordates.
Autorzy:
Northover DE; Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
Shank SD; Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
Liberles DA; Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA. .; Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .
Źródło:
BMC evolutionary biology [BMC Evol Biol] 2020 Feb 11; Vol. 20 (1), pp. 24. Date of Electronic Publication: 2020 Feb 11.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2001-
MeSH Terms:
Evolution, Molecular*
Genetic Speciation*
Chordata/*classification
Chordata/*genetics
Genetic Variation/*physiology
Animals ; Biological Evolution ; Cetacea/classification ; Cetacea/genetics ; Gene Duplication/physiology ; Genes, Duplicate ; Genome ; Genomics ; Phylogeny
References:
PLoS Biol. 2016 Mar 03;14(3):e1002396. (PMID: 26938925)
FEBS Lett. 2001 Mar 16;492(3):193-8. (PMID: 11257493)
BMC Evol Biol. 2011 Dec 16;11:361. (PMID: 22171550)
Mol Biol Evol. 2013 Jul;30(7):1675-86. (PMID: 23558341)
J Biol Chem. 2015 Feb 27;290(9):5783-96. (PMID: 25575591)
Nucleic Acids Res. 2015 Jan;43(Database issue):D376-81. (PMID: 25348408)
Zoology (Jena). 2016 Aug;119(4):241-3. (PMID: 27432487)
Protein Sci. 2016 Jul;25(7):1168-78. (PMID: 26808055)
Syst Biol. 2010 May;59(3):307-21. (PMID: 20525638)
J Biol Chem. 2014 Oct 31;289(44):30221-8. (PMID: 25210038)
Proteins. 2018 Feb;86(2):218-228. (PMID: 29178386)
J Mol Biol. 2000 Jan 7;295(1):7-16. (PMID: 10623504)
Biochem Mol Biol Educ. 2015 May-Jun;43(3):206-9. (PMID: 25704928)
Aging (Albany NY). 2011 Aug;3(8):716-32. (PMID: 21869457)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Annu Rev Genomics Hum Genet. 2011;12:347-66. (PMID: 21756106)
Nucleic Acids Res. 2020 Jan 8;48(D1):D84-D86. (PMID: 31665464)
Mol Biol Evol. 2016 Dec;33(12):3170-3182. (PMID: 27671125)
BMC Evol Biol. 2016 Feb 20;16:45. (PMID: 26897341)
BMC Evol Biol. 2017 May 25;17(1):117. (PMID: 28545395)
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D495-7. (PMID: 15608245)
PLoS One. 2007 Aug 08;2(8):e708. (PMID: 17684554)
Nat Methods. 2016 May;13(5):425-30. (PMID: 27043882)
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):E3226-35. (PMID: 26056312)
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. (PMID: 10592235)
Mol Biol Evol. 2019 Apr 1;36(4):679-690. (PMID: 30668757)
Proteins. 2009 Nov 15;77(3):499-508. (PMID: 19507241)
J Mol Biol. 1973 May 15;76(2):241-56. (PMID: 4737475)
Science. 2014 Dec 12;346(6215):1311-20. (PMID: 25504712)
Biochemistry. 2004 Oct 19;43(41):12990-9. (PMID: 15476392)
J Mol Evol. 2007 Nov;65(5):574-88. (PMID: 17957399)
Electrophoresis. 2009 Jun;30 Suppl 1:S162-73. (PMID: 19517507)
BMC Evol Biol. 2015 Oct 28;15:232. (PMID: 26511837)
J Biol Chem. 2006 May 26;281(21):14529-32. (PMID: 16459331)
Protein Sci. 2016 Jul;25(7):1188-203. (PMID: 26833690)
Nat Commun. 2016 Nov 18;7:13570. (PMID: 27857066)
J Mol Evol. 1974;3(2):89-101. (PMID: 4407466)
J Mol Evol. 2017 Aug;85(1-2):46-56. (PMID: 28795237)
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819. (PMID: 28387841)
Genetics. 1999 Jun;152(2):783-95. (PMID: 10353918)
Genome Biol. 2014;15(12):542. (PMID: 25607475)
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92. (PMID: 23077252)
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9. (PMID: 14681372)
PLoS One. 2013 Nov 21;8(11):e80635. (PMID: 24278298)
Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. (PMID: 26476454)
Mol Biol Evol. 1998 May;15(5):568-73. (PMID: 9580986)
Mol Biol Evol. 2007 May;24(5):1219-28. (PMID: 17339634)
Mol Biol Evol. 2005 Jun;22(6):1412-22. (PMID: 15772376)
PLoS Comput Biol. 2013;9(2):e1002905. (PMID: 23408879)
Biochem J. 2007 Jul 15;405(2):261-8. (PMID: 17407445)
Mol Biol Evol. 2012 Oct;29(10):3045-60. (PMID: 22809797)
Genome Biol. 2001;2(8):RESEARCH0028. (PMID: 11532212)
Curr Opin Struct Biol. 2012 Dec;22(6):691-700. (PMID: 23142576)
Proc Natl Acad Sci U S A. 1945 Jun;31(6):153-7. (PMID: 16578152)
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8. (PMID: 24782522)
Biopolymers. 1983 Dec;22(12):2577-637. (PMID: 6667333)
BMC Syst Biol. 2010 Dec 30;4:179. (PMID: 21190591)
Mamm Genome. 2000 Nov;11(11):1016-23. (PMID: 11063259)
Mol Biol Evol. 2015 Apr;32(4):1097-108. (PMID: 25576365)
Annu Rev Microbiol. 1976;30:409-25. (PMID: 791073)
Genome Biol Evol. 2011;3:1197-209. (PMID: 21920903)
Nat Rev Microbiol. 2008 Apr;6(4):315-9. (PMID: 18311164)
Evolution. 2015 Feb;69(2):341-56. (PMID: 25496318)
BMC Evol Biol. 2005 Apr 14;5:28. (PMID: 15831095)
BMC Bioinformatics. 2004 Feb 18;5:15. (PMID: 15113413)
J Mol Evol. 2016 Jan;82(1):17-26. (PMID: 26733481)
Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1352-9. (PMID: 22547823)
Nucleic Acids Res. 2014 Jan;42(Database issue):D917-21. (PMID: 24225318)
Biol Direct. 2016 Jul 08;11:31. (PMID: 27393343)
Protein Sci. 2016 Jul;25(7):1219-26. (PMID: 27010590)
Proc Biol Sci. 2014 Dec 22;281(1797):. (PMID: 25355473)
J Mol Evol. 2006 Aug;63(2):240-50. (PMID: 16830091)
Mol Biol Evol. 2010 Mar;27(3):506-19. (PMID: 19858068)
Nucleic Acids Res. 2017 Jan 4;45(D1):D635-D642. (PMID: 27899575)
Proc Biol Sci. 2011 Jul 7;278(1714):1930-5. (PMID: 21490020)
Mol Phylogenet Evol. 2013 Feb;66(2):479-506. (PMID: 23103570)
Grant Information:
P20 RR016474 United States RR NCRR NIH HHS
Contributed Indexing:
Keywords: Comparative genomics; Gene duplication; Molecular evolution; Pathway evolution; Protein structure
Entry Date(s):
Date Created: 20200213 Date Completed: 20200623 Latest Revision: 20200623
Update Code:
20240105
PubMed Central ID:
PMC7011509
DOI:
10.1186/s12862-020-1585-y
PMID:
32046633
Czasopismo naukowe
Background: Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures.
Results: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in β-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement.
Conclusion: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies