Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease.

Tytuł:
IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease.
Autorzy:
Abadie V; Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada. .; Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada. .; Department of Medicine, University of Chicago, Chicago, IL, USA. .
Kim SM; Department of Medicine, University of Chicago, Chicago, IL, USA.; Committee on Immunology, University of Chicago, Chicago, IL, USA.; Department of Biology, University of San Francisco, San Francisco, CA, USA.
Lejeune T; Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.; Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
Palanski BA; Department of Chemistry, Stanford University, Stanford, CA, USA.
Ernest JD; Department of Medicine, University of Chicago, Chicago, IL, USA.; Committee on Immunology, University of Chicago, Chicago, IL, USA.
Tastet O; Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
Voisine J; Department of Medicine, University of Chicago, Chicago, IL, USA.; Committee on Immunology, University of Chicago, Chicago, IL, USA.
Discepolo V; Department of Medicine, University of Chicago, Chicago, IL, USA.
Marietta EV; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.; Department of Immunology, Mayo Clinic, Rochester, MN, USA.; Department of Dermatology, Mayo Clinic, Rochester, MN, USA.
Hawash MBF; Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.; Department of Biochemistry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
Ciszewski C; Department of Medicine, University of Chicago, Chicago, IL, USA.; Committee on Immunology, University of Chicago, Chicago, IL, USA.
Bouziat R; Department of Medicine, University of Chicago, Chicago, IL, USA.; Committee on Immunology, University of Chicago, Chicago, IL, USA.
Panigrahi K; Department of Medicine, University of Chicago, Chicago, IL, USA.
Horwath I; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
Zurenski MA; Department of Medicine, University of Chicago, Chicago, IL, USA.
Lawrence I; Department of Medicine, University of Chicago, Chicago, IL, USA.
Dumaine A; Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
Yotova V; Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
Grenier JC; Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
Murray JA; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
Khosla C; Department of Chemistry, Stanford University, Stanford, CA, USA.; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.; Stanford ChEM-H, Stanford University, Stanford, CA, USA.
Barreiro LB; Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA.
Jabri B; Department of Medicine, University of Chicago, Chicago, IL, USA. .; Committee on Immunology, University of Chicago, Chicago, IL, USA. .; Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, IL, USA. .; Department of Pathology, University of Chicago, Chicago, IL, USA. .; University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA. .
Źródło:
Nature [Nature] 2020 Feb; Vol. 578 (7796), pp. 600-604. Date of Electronic Publication: 2020 Feb 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Celiac Disease/*immunology
Celiac Disease/*pathology
Glutens/*immunology
HLA-DQ Antigens/*immunology
Interleukin-15/*immunology
Animals ; CD4-Positive T-Lymphocytes/immunology ; Female ; HLA-DQ Antigens/genetics ; Humans ; Interferon-gamma/immunology ; Interleukin-15/genetics ; Male ; Mice ; Mice, Transgenic ; Microfilament Proteins/genetics ; Microfilament Proteins/metabolism
References:
Abadie, V., Sollid, L. M., Barreiro, L. B. & Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29, 493–525 (2011). (PMID: 10.1146/annurev-immunol-040210-092915)
Green, P. H. & Cellier, C. Celiac disease. N. Engl. J. Med. 357, 1731–1743 (2007). (PMID: 10.1056/NEJMra071600)
Plugis, N. M. & Khosla, C. Therapeutic approaches for celiac disease. Best Pract. Res. Clin. Gastroenterol. 29, 503–521 (2015). (PMID: 10.1016/j.bpg.2015.04.005)
Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9, 858–870 (2009). (PMID: 10.1038/nri2670)
Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012). (PMID: 10.1097/MPG.0b013e31821a23d0)
Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997). (PMID: 10.1038/nm0797-797)
Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015). (PMID: 10.1038/nri3919)
Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006). (PMID: 10.1038/nri1901)
Setty, M. et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterol. 149, 681–691 (2015). (PMID: 10.1053/j.gastro.2015.05.013)
Black, K. E., Murray, J. A. & David, C. S. HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J. Immunol. 169, 5595–5600 (2002). (PMID: 10.4049/jimmunol.169.10.5595)
Jabri, B. & Sollid, L. M. Mechanisms of disease: immunopathogenesis of celiac disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 516–525 (2006). (PMID: 10.1038/ncpgasthep0582)
Korneychuk, N. et al. Interleukin 15 and CD4 T cells drive gluten-dependent small intestinal damage after adoptive transfer into lymphopenic mice. Gut 58, 1597–1605 (2009). (PMID: 10.1136/gut.2009.186361)
Meisel, M. et al. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME J. 11, 15–30 (2017). (PMID: 10.1038/ismej.2016.114)
Pinto, D., Robine, S., Jaisser, F., El Marjou, F. E. & Louvard, D. Regulatory sequences of the mouse villin gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small and large intestines. J. Biol. Chem. 274, 6476–6482 (1999). (PMID: 10.1074/jbc.274.10.6476)
Lefrancois, L. & Lycke, N. Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer's patch, and lamina propria cells. Curr. Protoc. Immunol. Chapter 3, Unit 3.19 (2001). (PMID: 18432783)
Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017). (PMID: 10.1126/science.aah5298)
DiRaimondo, T. R. et al. Elevated transglutaminase 2 activity is associated with hypoxia-induced experimental pulmonary hypertension in mice. ACS Chem. Biol. 9, 266–275 (2014). (PMID: 10.1021/cb4006408)
Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008). (PMID: 10.1093/bioinformatics/btn224)
Lin, S. M., Du, P., Huber, W. & Kibbe, W. A. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36, e11 (2008). (PMID: 10.1093/nar/gkm1075)
Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article3 (2004). (PMID: 10.2202/1544-6115.1027)
Benjamini, Y. H. Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. A Stat. Soc. 57, 289–300 (1995).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 10.1038/nbt.3519)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 10.1093/bioinformatics/btp616)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 10.1093/nar/gkv007)
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009). (PMID: 10.1186/1471-2105-10-48)
Grant Information:
T32 DK007074 United States DK NIDDK NIH HHS; T32 AI007090 United States AI NIAID NIH HHS; R01 DK100619 United States DK NIDDK NIH HHS; R01 DK063158 United States DK NIDDK NIH HHS; R01 DK067180 United States DK NIDDK NIH HHS; P30 DK042086 United States DK NIDDK NIH HHS
Substance Nomenclature:
0 (HLA-DQ Antigens)
0 (HLA-DQ8 antigen)
0 (IL15 protein, human)
0 (Interleukin-15)
0 (Microfilament Proteins)
0 (villin)
8002-80-0 (Glutens)
82115-62-6 (Interferon-gamma)
Entry Date(s):
Date Created: 20200214 Date Completed: 20200403 Latest Revision: 20210223
Update Code:
20240105
PubMed Central ID:
PMC7047598
DOI:
10.1038/s41586-020-2003-8
PMID:
32051586
Czasopismo naukowe
Coeliac disease is a complex, polygenic inflammatory enteropathy caused by exposure to dietary gluten that occurs in a subset of genetically susceptible individuals who express either the HLA-DQ8 or HLA-DQ2 haplotypes 1,2 . The need to develop non-dietary treatments is now widely recognized 3 , but no pathophysiologically relevant gluten- and HLA-dependent preclinical model exists. Furthermore, although studies in humans have led to major advances in our understanding of the pathogenesis of coeliac disease 4 , the respective roles of disease-predisposing HLA molecules, and of adaptive and innate immunity in the development of tissue damage, have not been directly demonstrated. Here we describe a mouse model that reproduces the overexpression of interleukin-15 (IL-15) in the gut epithelium and lamina propria that is characteristic of active coeliac disease, expresses the predisposing HLA-DQ8 molecule, and develops villous atrophy after ingestion of gluten. Overexpression of IL-15 in both the epithelium and the lamina propria is required for the development of villous atrophy, which demonstrates the location-dependent central role of IL-15 in the pathogenesis of coeliac disease. In addition, CD4 + T cells and HLA-DQ8 have a crucial role in the licensing of cytotoxic T cells to mediate intestinal epithelial cell lysis. We also demonstrate a role for the cytokine interferon-γ (IFNγ) and the enzyme transglutaminase 2 (TG2) in tissue destruction. By reflecting the complex interaction between gluten, genetics and IL-15-driven tissue inflammation, this mouse model provides the opportunity to both increase our understanding of coeliac disease, and develop new therapeutic strategies.
Comment in: Nat Rev Gastroenterol Hepatol. 2020 Apr;17(4):194-195. (PMID: 32123376)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies