Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bayesian inference and comparison of stochastic transcription elongation models.

Tytuł:
Bayesian inference and comparison of stochastic transcription elongation models.
Autorzy:
Douglas J; School of Biological Sciences, University of Auckland, Auckland, New Zealand.; Centre for Computational Evolution, School of Computer Science, University of Auckland, Auckland, New Zealand.
Kingston R; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
Drummond AJ; School of Biological Sciences, University of Auckland, Auckland, New Zealand.; Centre for Computational Evolution, School of Computer Science, University of Auckland, Auckland, New Zealand.
Źródło:
PLoS computational biology [PLoS Comput Biol] 2020 Feb 14; Vol. 16 (2), pp. e1006717. Date of Electronic Publication: 2020 Feb 14 (Print Publication: 2020).
Typ publikacji:
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms:
Bayes Theorem*
Models, Genetic*
Stochastic Processes*
Transcription, Genetic*
Bacteriophage T7/enzymology ; DNA-Directed RNA Polymerases/metabolism ; Escherichia coli/enzymology ; Kinetics ; Markov Chains ; Saccharomyces cerevisiae
References:
Nucleic Acids Res. 2004 Jul 06;32(12):3515-21. (PMID: 15247341)
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13538-43. (PMID: 12370445)
Biochemistry. 1975 Jul 15;14(14):3220-4. (PMID: 1148201)
Methods. 2009 Aug;48(4):323-32. (PMID: 19426807)
Biophys J. 2005 Dec;89(6):L61-3. (PMID: 16239336)
Nat Genet. 1995 Feb;9(2):184-90. (PMID: 7719347)
Nucleic Acids Res. 2018 Jun 20;46(11):5764-5775. (PMID: 29771376)
J Biol Chem. 1981 Mar 25;256(6):2787-97. (PMID: 7009598)
Cell. 1980 Apr;19(4):855-62. (PMID: 7379123)
Nature. 2005 Nov 24;438(7067):460-5. (PMID: 16284617)
EMBO J. 2003 May 1;22(9):2234-44. (PMID: 12727889)
Biophys J. 2009 Mar 18;96(6):2189-93. (PMID: 19289045)
Biophys Rev. 2013 Dec;5(4):323-345. (PMID: 28510113)
Annu Rev Biophys Biomol Struct. 1992;21:379-415. (PMID: 1381976)
J Biol Chem. 1974 Oct 25;249(20):6675-83. (PMID: 4608711)
Phys Rev Lett. 2005 Apr 1;94(12):128102. (PMID: 15903965)
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6642-7. (PMID: 24733897)
Cell. 2004 Feb 6;116(3):393-404. (PMID: 15016374)
J Mol Biol. 1998 May 1;278(2):307-16. (PMID: 9571053)
Mol Cell. 2005 Mar 18;17(6):831-40. (PMID: 15780939)
J Mol Biol. 2008 Oct 10;382(3):628-37. (PMID: 18647607)
FEBS J. 2014 Jan;281(2):464-72. (PMID: 24245583)
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10352-7. (PMID: 17553968)
Proc Natl Acad Sci U S A. 1987 Mar;84(5):1192-6. (PMID: 3547406)
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7090-5. (PMID: 10860976)
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12250-4. (PMID: 8618879)
Biotechnol Bioeng. 2001 Mar 5;72(5):548-61. (PMID: 11460245)
J Mol Biol. 1998 Sep 4;281(5):777-92. (PMID: 9719634)
Science. 1998 Oct 30;282(5390):902-7. (PMID: 9794753)
J Stat Mech. 2010 Dec;2010:. (PMID: 22446379)
Eur J Biochem. 2002 Jun;269(12):2821-30. (PMID: 12071944)
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4439-44. (PMID: 16537373)
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9738-9743. (PMID: 30194237)
Cell. 2003 Nov 14;115(4):437-47. (PMID: 14622598)
Mol Cell. 2008 Jun 6;30(5):557-66. (PMID: 18538654)
J Bacteriol. 1994 May;176(10):2807-13. (PMID: 7514589)
J Biol Chem. 2004 Jan 30;279(5):3292-9. (PMID: 14604986)
J Biol Chem. 1994 Oct 7;269(40):25120-8. (PMID: 7929200)
Transcription. 2012 Sep-Oct;3(5):260-9. (PMID: 23132506)
J Biol Chem. 1967 Nov 10;242(21):4908-18. (PMID: 4862425)
Annu Rev Biochem. 2004;73:705-48. (PMID: 15189157)
J Biol Chem. 2004 Jan 30;279(5):3239-44. (PMID: 14597619)
Science. 2000 Mar 31;287(5462):2497-500. (PMID: 10741971)
Cell Rep. 2015 Feb 17;10(6):983-992. (PMID: 25683720)
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460-5. (PMID: 9465037)
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6555-60. (PMID: 22493230)
Annu Rev Biochem. 2008;77:149-76. (PMID: 18410247)
Trends Ecol Evol. 2010 Jul;25(7):410-8. (PMID: 20488578)
J Bacteriol. 1992 Jan;174(2):619-22. (PMID: 1729251)
Nat Struct Mol Biol. 2007 Sep;14(9):796-806. (PMID: 17676063)
Nat Rev Mol Cell Biol. 2005 Mar;6(3):221-32. (PMID: 15714199)
Phys Rev Lett. 2007 Feb 9;98(6):068103. (PMID: 17358986)
Science. 2009 Jul 31;325(5940):626-8. (PMID: 19644123)
Nature. 1993 Aug 12;364(6438):593-9. (PMID: 7688864)
Biophys J. 2011 Mar 2;100(5):1157-66. (PMID: 21354388)
Nat Chem Biol. 2006 Feb;2(2):87-94. (PMID: 16415859)
Elife. 2013 Sep 24;2:e00971. (PMID: 24066225)
Nature. 1953 Apr 25;171(4356):737-8. (PMID: 13054692)
Biophys J. 2008 Sep;95(5):2423-33. (PMID: 18708471)
Biophys J. 2012 Feb 8;102(3):532-41. (PMID: 22325276)
Nature. 2007 Apr 12;446(7137):820-3. (PMID: 17361130)
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):743-8. (PMID: 25552559)
J Bacteriol. 1982 Aug;151(2):879-87. (PMID: 6178724)
J Mol Biol. 2004 Nov 19;344(2):335-49. (PMID: 15522289)
Biochem J. 1925;19(2):338-9. (PMID: 16743508)
J Biol Chem. 2006 Nov 24;281(47):35677-85. (PMID: 17005565)
Nature. 2003 Dec 11;426(6967):684-7. (PMID: 14634670)
Substance Nomenclature:
EC 2.7.7.6 (DNA-Directed RNA Polymerases)
Entry Date(s):
Date Created: 20200215 Date Completed: 20200527 Latest Revision: 20210811
Update Code:
20240105
PubMed Central ID:
PMC7046298
DOI:
10.1371/journal.pcbi.1006717
PMID:
32059006
Czasopismo naukowe
Transcription elongation can be modelled as a three step process, involving polymerase translocation, NTP binding, and nucleotide incorporation into the nascent mRNA. This cycle of events can be simulated at the single-molecule level as a continuous-time Markov process using parameters derived from single-molecule experiments. Previously developed models differ in the way they are parameterised, and in their incorporation of partial equilibrium approximations. We have formulated a hierarchical network comprised of 12 sequence-dependent transcription elongation models. The simplest model has two parameters and assumes that both translocation and NTP binding can be modelled as equilibrium processes. The most complex model has six parameters makes no partial equilibrium assumptions. We systematically compared the ability of these models to explain published force-velocity data, using approximate Bayesian computation. This analysis was performed using data for the RNA polymerase complexes of E. coli, S. cerevisiae and Bacteriophage T7. Our analysis indicates that the polymerases differ significantly in their translocation rates, with the rates in T7 pol being fast compared to E. coli RNAP and S. cerevisiae pol II. Different models are applicable in different cases. We also show that all three RNA polymerases have an energetic preference for the posttranslocated state over the pretranslocated state. A Bayesian inference and model selection framework, like the one presented in this publication, should be routinely applicable to the interrogation of single-molecule datasets.
Competing Interests: The authors have declared that no competing interests exist.
Erratum in: PLoS Comput Biol. 2021 Aug 11;17(8):e1009314. (PMID: 34379639)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies