Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

CB1 Receptor-Dependent and Independent Induction of Lipolysis in Primary Rat Adipocytes by the Inverse Agonist Rimonabant (SR141716A).

Tytuł:
CB1 Receptor-Dependent and Independent Induction of Lipolysis in Primary Rat Adipocytes by the Inverse Agonist Rimonabant (SR141716A).
Autorzy:
Müller GA; Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany.; German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany.; Ludwig-Maximilians-University Munich, Department Biology I, Genetics, 82152 Planegg-Martinsried, Germany.
Herling AW; Sanofi Pharma Germany GmbH, Diabetes Research, 65926 Frankfurt am Main, Germany.
Wied S; Sanofi Pharma Germany GmbH, Diabetes Research, 65926 Frankfurt am Main, Germany.
Müller TD; Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany.; German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany.; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72074 Tübingen, Germany.
Źródło:
Molecules (Basel, Switzerland) [Molecules] 2020 Feb 18; Vol. 25 (4). Date of Electronic Publication: 2020 Feb 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, c1995-
MeSH Terms:
Drug Inverse Agonism*
Lipolysis*
Adipocytes/*metabolism
Receptor, Cannabinoid, CB1/*agonists
Receptor, Cannabinoid, CB1/*metabolism
Rimonabant/*pharmacology
Adipocytes/drug effects ; Animals ; Cell-Free System ; Cells, Cultured ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation/drug effects ; Lipid Droplets/metabolism ; Male ; Phosphorylation/drug effects ; Rats, Wistar ; Sterol Esterase/metabolism
References:
J Biol Chem. 1990 Nov 5;265(31):18769-75. (PMID: 2172232)
Clin Chem. 1971 Mar;17(3):145-7. (PMID: 5543185)
Br J Pharmacol. 2000 Jan;129(2):227-30. (PMID: 10694225)
Br J Pharmacol. 2016 Apr;173(7):1116-27. (PMID: 26076890)
Endocrinology. 1998 Jan;139(1):219-27. (PMID: 9421418)
J Lipid Res. 2005 Mar;46(3):603-14. (PMID: 15627655)
Prog Clin Biol Res. 1982;102 Pt C:213-23. (PMID: 6300929)
J Biol Chem. 2005 Jul 1;280(26):25250-7. (PMID: 15878856)
Biochem Pharmacol. 1994 Aug 30;48(5):985-96. (PMID: 8093111)
Biomolecules. 2019 Sep 16;9(9):. (PMID: 31527522)
J Biol Chem. 1985 Dec 5;260(28):15139-45. (PMID: 3905791)
J Obes. 2011;2011:432607. (PMID: 21773005)
Biochem Biophys Res Commun. 2000 Aug 11;274(3):631-4. (PMID: 10924329)
Obesity (Silver Spring). 2011 Jul;19(7):1325-34. (PMID: 21475141)
J Biol Chem. 2005 Jun 17;280(24):22624-31. (PMID: 15829485)
Mol Pharmacol. 2003 Apr;63(4):908-14. (PMID: 12644592)
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14136-41. (PMID: 10570211)
J Lipid Res. 1994 Jan;35(1):36-44. (PMID: 8138720)
Biochimie. 2003 Dec;85(12):1245-56. (PMID: 14739077)
J Enzyme Inhib Med Chem. 2017 Dec;32(1):444-451. (PMID: 28097916)
Life Sci. 1995;56(23-24):1941-7. (PMID: 7776817)
Mol Pharmacol. 1988 Nov;34(5):605-13. (PMID: 2848184)
Eur J Biochem. 1995 Aug 15;232(1):54-61. (PMID: 7556170)
Int J Obes Relat Metab Disord. 2004 Apr;28(4):640-8. (PMID: 14770190)
J Lipid Res. 1995 Jun;36(6):1211-26. (PMID: 7665999)
Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):377-91. (PMID: 12052051)
Curr Biol. 2001 Jun 5;11(11):R446-9. (PMID: 11516669)
Nature. 1993 Sep 2;365(6441):61-5. (PMID: 7689702)
J Biol Chem. 1991 Jun 15;266(17):11341-6. (PMID: 2040638)
Am J Physiol Regul Integr Comp Physiol. 2007 Dec;293(6):R2185-93. (PMID: 17959701)
FASEB J. 2014 Dec;28(12):5361-75. (PMID: 25154875)
Eur J Intern Med. 2018 Mar;49:23-29. (PMID: 29336868)
Biochem Pharmacol. 2005 Mar 1;69(5):761-80. (PMID: 15710354)
J Lipid Res. 2000 May;41(5):788-96. (PMID: 10787439)
FASEB J. 2019 Mar;33(3):4314-4326. (PMID: 30566396)
Biochim Biophys Acta. 1989 Nov 28;1006(2):193-7. (PMID: 2557074)
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10819-24. (PMID: 12136125)
Biochim Biophys Acta. 1958 Dec;30(3):513-21. (PMID: 13618257)
J Biol Chem. 2008 Nov 28;283(48):33021-5. (PMID: 18694938)
J Biol Chem. 2000 Feb 18;275(7):5011-5. (PMID: 10671541)
Biochem J. 2004 Apr 1;379(Pt 1):11-22. (PMID: 14725507)
Nature. 1990 Feb 22;343(6260):767-70. (PMID: 2304552)
J Clin Invest. 2003 Aug;112(3):423-31. (PMID: 12897210)
Biochim Biophys Acta. 1997 Jul 12;1347(1):23-39. (PMID: 9233684)
J Biol Chem. 2005 Jul 1;280(26):25196-201. (PMID: 15899896)
Ann N Y Acad Sci. 1999 Nov 18;892:155-68. (PMID: 10842661)
Diabetes. 2004 Jul;53(7):1920-6. (PMID: 15220221)
Biochemistry. 2004 Jul 27;43(29):9298-306. (PMID: 15260473)
Amino Acids. 2018 Nov;50(11):1595-1605. (PMID: 30145711)
Nature. 1990 Feb 22;343(6260):771-4. (PMID: 2106079)
Mol Pharmacol. 1985 Apr;27(4):429-36. (PMID: 2984538)
Life Sci. 2005 Feb 4;76(12):1307-24. (PMID: 15670612)
FASEB J. 2005 Sep;19(11):1567-9. (PMID: 16009704)
J Antibiot (Tokyo). 2002 May;55(5):480-94. (PMID: 12139017)
J Biol Chem. 2002 Nov 15;277(46):44507-12. (PMID: 12221100)
J Biol Chem. 1997 Oct 24;272(43):27218-23. (PMID: 9341166)
Int J Obes (Lond). 2008 Sep;32(9):1363-72. (PMID: 18626484)
Eur J Endocrinol. 2017 Jun;176(6):R309-R324. (PMID: 28246151)
Diabetes. 2005 Oct;54(10):2838-43. (PMID: 16186383)
Biochimie. 2005 Jan;87(1):45-9. (PMID: 15733736)
J Lipid Res. 2016 Mar;57(3):464-73. (PMID: 26768656)
Semin Cell Dev Biol. 1999 Feb;10(1):51-8. (PMID: 10355028)
Curr Opin Investig Drugs. 2004 Apr;5(4):430-5. (PMID: 15134285)
J Biol Chem. 2005 May 13;280(19):19146-55. (PMID: 15731108)
FEBS Lett. 1994 Oct 10;353(1):33-6. (PMID: 7926017)
Biochemistry. 2001 Dec 4;40(48):14603-20. (PMID: 11724574)
Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8537-41. (PMID: 1528859)
Pharmaceuticals (Basel). 2018 May 30;11(2):. (PMID: 29849009)
Diabetes. 1993 Dec;42(12):1852-67. (PMID: 8243832)
Clin Pharmacol Ther. 2019 May;105(5):1139-1147. (PMID: 30703255)
Contributed Indexing:
Keywords: Rimonabant; cannabinoid receptor 1 (CB1R); cyclic adenosine monophosphate (cAMP)-dependent signaling; hormone-sensitive lipase (HSL); interfacial activation; lipid droplets (LD); lipolysis; obesity
Substance Nomenclature:
0 (Receptor, Cannabinoid, CB1)
EC 2.7.11.11 (Cyclic AMP-Dependent Protein Kinases)
EC 3.1.1.13 (Sterol Esterase)
RML78EN3XE (Rimonabant)
Entry Date(s):
Date Created: 20200223 Date Completed: 20201130 Latest Revision: 20201130
Update Code:
20240105
PubMed Central ID:
PMC7070561
DOI:
10.3390/molecules25040896
PMID:
32085406
Czasopismo naukowe
(1) Background: Acute administration of the cannabinoid receptor 1 (CB1R) inverse agonist Rimonabant (SR141716A) to fed Wistar rats was shown to elicit a rapid and short-lasting elevation of serum free fatty acids. (2) Methods: The effect of Rimonabant on lipolysis in isolated primary rat adipocytes was studied to raise the possibility for direct mechanisms not involving the (hypothalamic) CB1R. (3) Results: Incubation of these cells with Rimonabant-stimulated lipolysis to up to 25% of the maximal isoproterenol effect, which was based on both CB1R-dependent and independent mechanisms. The CB1R-dependent one was already effective at Rimonabant concentrations of less than 1 µM and after short-term incubation, partially additive to β-adrenergic agonists and blocked by insulin and, in part, by adenosine deaminase, but not by propranolol. It was accompanied by protein kinase A (PKA)-mediated association of hormone-sensitive lipase (HSL) with lipid droplets (LD) and dissociation of perilipin-1 from LD. The CB1R-independent stimulation of lipolysis was observed only at Rimonabant concentrations above 1 µM and after long-term incubation and was not affected by insulin. It was recapitulated by a cell-free system reconstituted with rat adipocyte LD and HSL. Rimonabant-induced cell-free lipolysis was not affected by PKA-mediated phosphorylation of LD and HSL, but abrogated by phospholipase digestion or emulsification of the LD. Furthermore, LD isolated from adipocytes and then treated with Rimonabant (>1 µM) were more efficient substrates for exogenously added HSL compared to control LD. The CB1R-independent lipolysis was also demonstrated in primary adipocytes from fed rats which had been treated with a single dose of Rimonabant (30 mg/kg). (4) Conclusions: These data argue for interaction of Rimonabant (at high concentrations) with both the LD surface and the CB1R of primary rat adipocytes, each leading to increased access of HSL to LD in phosphorylation-independent and dependent fashion, respectively. Both mechanisms may lead to direct and acute stimulation of lipolysis at peripheral tissues upon Rimonabant administration and represent targets for future obesity therapy which do not encompass the hypothalamic CB1R.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies