Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zika virus infection studies with CD34 + hematopoietic and megakaryocyte-erythroid progenitors, red blood cells and platelets.

Tytuł:
Zika virus infection studies with CD34 hematopoietic and megakaryocyte-erythroid progenitors, red blood cells and platelets.
Autorzy:
Roth H; Division of Virology, Paul-Ehrlich-Institute, Langen, Hessen, Germany.
Schneider L; Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Hessen, Germany.
Eberle R; Division of Immunology, Paul-Ehrlich-Institute, Langen, Hessen, Germany.
Lausen J; Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Hessen, Germany.; Department of Genetics of Eukaryotes, Institute of Industrial Genetics, Stuttgart, Baden-Württemberg, Germany.
Modlich U; Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Hessen, Germany.
Blümel J; Division of Virology, Paul-Ehrlich-Institute, Langen, Hessen, Germany.
Baylis SA; Division of Virology, Paul-Ehrlich-Institute, Langen, Hessen, Germany.
Źródło:
Transfusion [Transfusion] 2020 Mar; Vol. 60 (3), pp. 561-574. Date of Electronic Publication: 2020 Feb 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Arlington, Va. : American Association Of Blood Banks
MeSH Terms:
Antigens, CD34/*metabolism
Blood Platelets/*metabolism
Hematopoietic Stem Cells/*metabolism
Megakaryocyte-Erythroid Progenitor Cells/*metabolism
Zika Virus/*pathogenicity
Zika Virus Infection/*metabolism
Cell Differentiation/physiology ; Cell Line ; Erythrocytes/cytology ; Humans ; RNA, Viral/genetics
References:
Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 1952;46:509-20.
Duffy MR, Chen T-H, Hancock WT, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 2009;360:2536-43. https://doi.org/10.1056/NEJMoa0805715.
Faye O, Freire CCM, Iamarino A, et al. Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis 2014;8:e2636. https://doi.org/10.1371/journal.pntd.0002636.
Zanluca C, de Melo VCA, Mosimann ALP, et al. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 2015;110:569-72.
World Health Organization (WHO). Countries and territories with current or previous Zika virus transmission. Geneva: World Health Organization; 2019.
Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev 2016;29:487-524.
Liu Z-Y, Shi W-F, Qin C-F. The evolution of Zika virus from Asia to the Americas. Nat Rev Microbiol 2019;17:131-9.
Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016;387:1531-9.
World Health Organization (WHO). Situation report: Zika virus, microcephaly, Guillain-Barré syndrome. Geneva: World Health Organization; (2016).
Rasmussen SA, Jamieson DJ, Honein MA, et al. Zika virus and birth defects - reviewing the evidence for causality. N Engl J Med 2016;374:1981-7. https://doi.org/10.1056/NEJMsr1604338.
Ventura CV, Maia M, Bravo-Filho V, et al. Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 2016;387:228. https://doi.org/10.1016/s0140-6736(16)00006-4.
Honein MA, Dawson AL, Petersen EE, et al. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 2017;317:59-68.
Frenkel LD, Gomez F, Sabahi F. The pathogenesis of microcephaly resulting from congenital infections: why is my babyʼs head so small? Eur J Clin Microbiol Infect Dis 2018;37:209-26.
Rosenstierne MW, Schaltz-Buchholzer F, Bruzadelli F, et al. Zika virus IgG in infants with microcephaly, Guinea-Bissau, 2016. Emerg Infect Dis 2018;24:948-50.
World Health Organization (WHO). WHO statement on the first meeting of the International Health Regulations Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations. Geneva: World Health Organization; (2005).
Roche C, Mallet H-PP, Aubry M, et al. Zika virus seroprevalence, French Polynesia, 2014-2015. Emerg Infect Dis 2017;23:669-72. https://doi.org/10.3201/eid2304.161549.
Musso D, Rouault E, Teissier A, et al. Molecular detection of Zika virus in blood and RNA load determination during the French Polynesian outbreak. J Med Virol 2017;89:1505-10. https://doi.org/10.1002/jmv.24735.
Paturel L, Pastorino B, Cabié A, et al. Zika virus in asymptomatic blood donors in Martinique. Blood 2016;129:263-6. https://doi.org/10.1182/blood-2016-09-737981.
Chevalier MS, Biggerstaff BJ, Basavaraju SV, et al. Use of blood donor screening data to estimate zika virus incidence, Puerto Rico, April-August 2016. Emerg Infect Dis 2017;23:790-5. https://doi.org/10.3201/eid2305.161873.
Galel SA, Williamson PC, Busch MP, et al. First Zika-positive donations in the continental United States. Transfusion 2017;57:762-9.
Williamson PC, Linnen JM, Kessler DA, et al. First cases of Zika virus-infected US blood donors outside states with areas of active transmission. Transfusion 2017;57:770-8.
Saa P, Chiu C, Grimm K, et al. Acute Zika virus infection in an asymptomatic blood donor at the onset of the Puerto Rico epidemic. Transfusion 2019;59:3164-70. https://doi.org/10.1111/trf.15484.
Barjas-Castro ML, Angerami RN, Cunha MS, et al. Probable transfusion-transmitted Zika virus in Brazil. Transfusion 2016;56:1684-8. https://doi.org/10.1111/trf.13681.
Motta IJF, Spencer BR, Cordeiro da Silva SG, et al. Evidence for transmission of Zika virus by platelet transfusion. N Engl J Med 2016;375:1101-3.
European Centre for Disease Prevention and Control (ECDC). Zika virus transmission worldwide. Sweden: Stockholm; (2019).
World Health Organization (WHO). Maintaining a safe and adequate blood supply during Zika virus outbreaks. Geneva: World Health Organization; (2016).
Food and Drug Administration (FDA). Revised recommendations for reducing the risk of Zika virus transmission by blood and blood components (FDA guideline). US: US-FDA; (2018).
Mansuy JM, Mengelle C, Pasquier C, et al. Zika virus infection and prolonged viremia in whole-blood specimens. Emerg Infect Dis 2017;23:863-5. https://doi.org/10.3201/eid2305.161631.
Joguet G, Mansuy JM, Matusali G, et al. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study. Lancet Infect Dis 2017;17:1200-8. https://doi.org/10.1016/S1473-3099(17)30444-9.
Lustig Y, Mendelson E, Paran N, et al. Detection of Zika virus RNA in whole blood of imported Zika virus disease cases up to 2 months after symptom onset, Israel, December 2015 to April 2016. Euro Surveill 2016;21:30269.
Murray KO, Gorchakov R, Carlson AR, et al. Prolonged detection of zika virus in vaginal secretions and whole blood. Emerg Infect Dis 2017;23:99-101.
Coffey LL, Pesavento PA, Keesler RI, et al. Zika virus tissue and blood compartmentalization in acute infection of rhesus macaques. PLoS One 2017;12:e0171148.
Heck E, Cavanagh HD, Robertson DM. Zika virus RNA in an asymptomatic donorʼs vitreous: risk of transmission? Am J Transplant 2017;17:2227-8. https://doi.org/10.1111/ajt.14334.
Sharp TM, Muñoz-Jordán J, Perez-Padilla J, et al. Zika virus infection associated with severe thrombocytopenia. Clin Infect Dis 2016;63:1198-1201. https://doi.org/10.1093/cid/ciw476.
Karimi O, Goorhuis A, Schinkel J, et al. Thrombocytopenia and subcutaneous bleedings in a patient with Zika virus infection. Lancet 2016;387:939-40. https://doi.org/10.1016/S0140-6736(16)00502-X.
Arzuza-Ortega L, Polo A, Pérez-Tatis G, et al. Fatal sickle cell disease and Zika virus infection in girl from Colombia. Emerg Infect Dis 2016;22:925-7. https://doi.org/10.3201/eid2205.151934.
Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993;81:2844-53.
Bieber E. Erythropoietin, the biology of erythropoiesis and epoetin alfa. An overview. J Reprod Med 2001;46:521-30.
Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Investig 2005;115:3339-47. https://doi.org/10.1172/JCI26674.
Srour EF, Brandt JE, Briddell RA, et al. Human CD34+ HLA-DR- bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 1991.
Luck L, Zeng L, Hiti AL, et al. Human CD34(+) and CD34(+)CD38(−) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells. Exp Hematol 2004;32:483-93.
Kratz-Albers K, Scheding S, Möhle R, et al. Effective ex vivo generation of megakaryocytic cells from mobilized peripheral blood CD34(+) cells with stem cell factor and promegapoietin. Exp Hematol 2000;28:335-46.
Attar A. Changes in the cell surface markers during normal hematopoiesis: a guide to cell isolation. Global J Hematol Blood Transfus 2014;1:20-8.
Michlmayr D, Andrade P, Gonzalez K, et al. CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua. Nat Microbiol 2017;2:1462-70. https://doi.org/10.1038/s41564-017-0035-0.
Jurado KA, Iwasaki A. Zika virus targets blood monocytes. Nat Microbiol 2017;2:1460-1. https://doi.org/10.1038/s41564-017-0049-7.
Quicke KM, Bowen JR, Johnson EL, et al. Zika Virus infects human placental macrophages. Cell Host Microbe 2016;20:83-90. https://doi.org/10.1016/j.chom.2016.05.015.
Vielle NJ, Zumkehr B, García-Nicolás O, et al. Silent infection of human dendritic cells by African and Asian strains of Zika virus. Sci Rep 2018;8:5440. https://doi.org/10.1038/s41598-018-23734-3.
Leary JF, Ohlsson-Wilhelm BM, Giuliano R, et al. Multipotent human hematopoietic cell line K562: lineage-specific constitutive and inducible antigens. Leuk Res 1987;11:807-15. https://doi.org/10.1016/0145-2126(87)90065-8.
Tabiliol A, Rosa J, Testal U, et al. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL). EMBO J 1984;3:453-9.
Ogura M, Morishima Y, Ohno R, et al. Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 1985;66:1384-92.
Masaki B. KU 812: a pluripotent human cell line with spontaneous erythroid terminal maturation. Blood 2016;73:2003-13.
Miyagawa E, Yoshida T, Takahashi H, et al. Infection of the erythroid cell line, KU812Ep6 with human parvovirus B19 and its application to titration of B19 infectivity. J Virol Methods 1999;83:45-54.
Aubry M, Richard V, Green J, et al. Inactivation of Zika virus in plasma with amotosalen and ultraviolet A illumination. Transfusion 2016;56:33-40.
Trösemeier J-H, Musso D, Blümel J, et al. Genome sequence of a candidate World Health Organization reference strain of Zika virus for nucleic acid testing. Genome Announc 2016;4:e00917-16. https://doi.org/10.1128/genomea.00917-16.
Spearman C. The method of ‘right and wrong cases’ (‘constant stimuli’) without gaussʼs formulae. Br J Psychol 1908;2:227-42.
Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1931;162:480-3.
Baylis SA, Hanschmann KMO, Schnierle BS, et al. Harmonization of nucleic acid testing for Zika virus: development of the 1st World Health Organization International Standard. Transfusion 2017;57:748-61. https://doi.org/10.1111/trf.14026.
Boller K, Janssen O, Schuldes H, et al. Characterization of the antibody response specific for the human endogenous retrovirus HTDV/HERV-K. J Virol 1997;71:4581-8.
Leisi R, Von Nordheim M, Kempf C, et al. Specific targeting of proerythroblasts and erythroleukemic cells by the VP1u region of parvovirus B19. Bioconjug Chem 2015;26:1923-30. https://doi.org/10.1021/acs.bioconjchem.5b00321.
Bua G, Manaresi E, Bonvicini F, et al. Parvovirus B19 replication and expression in differentiating erythroid progenitor cells. PLoS One 2016;11:e0148547. https://doi.org/10.1371/journal.pone.0148547.
Blumel J, Eis-Hubinger AM, Stuhler A, et al. Characterization of parvovirus B19 genotype 2 in KU812Ep6 cells. J Virol 2005;79:14197-206.
Schick PK, Walker J, Profeta B, et al. Synthesis and secretion of von Willebrand factor and fibronectin in megakaryocytes at different phases of maturation. Arterioscler Thromb Vasc Biol 1997;17:797-801.
Hou W, Armstrong N, Obwolo LA, et al. Determination of the cell permissiveness spectrum, mode of RNA replication, and RNA-protein interaction of Zika virus. BMC Infect Dis 2017;17:239.
Ramos da Silva S, Cheng F, Huang IC, et al. Efficiencies and kinetics of infection in different cell types/lines by African and Asian strains of Zika virus. J Med Virol 2019;91:179-89.
Simonin Y, Loustalot F, Desmetz C, et al. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine 2016;12:161-9.
Tripathi S, Balasubramaniam VRMT, Brown JA, et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 2017;13:e1006258.
Willis E, Hensley SE. Characterization of Zika virus binding and enhancement potential of a large panel of flavivirus murine monoclonal antibodies. Virology 2017;508:1-6. https://doi.org/10.1016/j.virol.2017.04.031.
Li B, Liao HM, Liu H, et al. Comparative genomics, infectivity and cytopathogenicity of Zika viruses produced by acutely and persistently infected human hematopoietic cell lines. PLoS One 2018;13:e0203331. https://doi.org/10.1371/journal.pone.0203331.
Kishi K. A new leukemia cell line with philadelphia chromosome characterized as basophil precursors. Leuk Res 1985;9:381-90.
Fukuda T, Kishi K, Ohnishi Y, et al. Bipotential cell differentiation of KU-812: evidence of a hybrid cell line that differentiates into basophil and macrophage-like cells. Blood 1987;70:612-9.
Wu X, Dao Thi VL, Huang Y, et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 2018;172:423-438.e25. https://doi.org/10.1016/j.cell.2017.11.018.
Hsu AY, Ho TC, Lai ML, et al. Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion 2019;59:2938-51. https://doi.org/10.1111/trf.15416.
Clark KB, Hsiao H-M, Bassit L, et al. Characterization of dengue virus 2 growth in megakaryocyte-erythrocyte progenitor cells. Virology 2016;493:162-72.
Clark KB, Noisakran S, Onlamoon N, et al. Multiploid CD61+ cells are the pre-dominant cell lineage infected during acute dengue virus infection in bone marrow. PLoS One 2012;7:e52902. https://doi.org/10.1371/journal.pone.0052902.
Rondina MT, Weyrich AS. Dengue virus pirates human platelets. Blood 2015;126:286-7.
Marovich M, Grouard-Vogel G, Louder M, et al. Human dendritic cells as targets of dengue virus infection. J Investig Dermatol Symp Proc 2001;6:219-24.
Wu SJ, Grouard-Vogel G, Sun W, et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000;6:816-20.
Wong KL, Chen W, Balakrishnan T, et al. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One 2012;7:e36435. https://doi.org/10.1371/journal.pone.0036435.
Chao CH, Wu WC, Lai YC, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog 2019;15:e1007625.
Tadkalkar N, Prasad S, Gangodkar S, et al. Dengue virus NS1 exposure affects von willebrand factor profile and platelet adhesion properties of cultured vascular endothelial cells. Indian J Hematol Blood Transfus 2019;35:502-6.
Sridharan A, Chen Q, Tang KF, et al. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol 2013;87:11648-58.
Kolb-Mäurer A, Goebel W. Susceptibility of hematopoietic stem cells to pathogens: role in virus/bacteria tropism and pathogenesis. FEMS Microbiol Lett 2003;226:203-7.
Morinet F, Leruez-Ville M, Pillet S, et al. Concise review: anemia caused by viruses. Stem Cells 2011;29:1656-60.
Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014;5:649. https://doi.org/10.3389/fimmu.2014.00649.
Conde JN, Silva EM, Barbosa AS, et al. The complement system in flavivirus infections. Front Microbiol 2017;8:213. https://doi.org/10.3389/fmicb.2017.00213.
Mladinich MC, Schwedes J, Mackow ER. Zika virus persistently infects and is basolaterally released from primary human brain microvascular endothelial cells. MBio 2017;8:e00952-17. https://doi.org/10.1128/mbio.00952-17.
Garcez PP, Stolp HB, Sravanam S, et al. Zika virus impairs the development of blood vessels in a mouse model of congenital infection. Sci Rep 2018;8:12774.
Anfasa F, Goeijenbier M, Widagdo W, et al. Zika virus infection induces elevation of tissue factor production and apoptosis on human umbilical vein endothelial cells. Front Microbiol 2019;10:817.
Bönig H, Heiden M, Schüttrumpf J, et al. Potenzial hämatopoetischer Stammzellen als Ausgangsmaterial für Arzneimittel für neuartige Therapien. Bundesgesundheitsblatt Gesundheitsforsch Gesundheitsschutz 2011;54:791-6.
Aminoff D, Anderson J, Dabich L, et al. Sialic acid content of erythrocytes in normal individuals and patients with certain hematologic disorders. Am J Hematol 1980;9:381-9.
Podbielska M, Fredriksson S-A, Nilsson B, et al. ABH blood group antigens in O-glycans of human glycophorin A. Arch Biochem Biophys 2004;429:145-53.
Aoki T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes (Basel) 2017;7:1-19. https://doi.org/10.3390/membranes7040056.
Giannini S, Falet H, Hoffmeister K. Platelet glycobiology and the control of platelet function and lifespan. In: Platelets; 2019. Elsevier. p. 79-97. https://doi.org/10.1016/b978-0-12-813456-6.00004-7.
Prete A, Urtula A, Grozovsky R. Sialic acid content on platelet surface glycoproteins modulates thrombin-induced activation. Blood 2018;132:3730. https://doi.org/10.1182/BLOOD-2018-99-119303.
Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol 2019;34:117-29. https://doi.org/10.1016/j.coviro.2019.01.004.
Wasik BR, Barnard KN, Parrish CR. Effects of sialic acid modifications on virus binding and infection. Trends Microbiol 2016;24:991-1001.
Tan CW, Huan Hor CH, Kwek SS, et al. Cell surface α2,3-linked sialic acid facilitates Zika virus internalization. Emerg Microbes Infect 2019;8:426-37. https://doi.org/10.1080/22221751.2019.1590130.
Blümel J, Musso D, Teitz S, et al. Inactivation and removal of Zika virus during manufacture of plasma-derived medicinal products. Transfusion 2017;57:790-6. https://doi.org/10.1111/trf.13873.
Henschler R, Gabriel C, Schallmoser K, et al. Human platelet lysate current standards and future developments. Transfusion 2019;59:1407-13.
Rios M, Daniel S, Chancey C, et al. West Nile virus adheres to human red blood cells in whole blood. Clin Infect Dis 2007;45:181-6.
Grant Information:
International German Ministry of Health
Substance Nomenclature:
0 (Antigens, CD34)
0 (RNA, Viral)
Entry Date(s):
Date Created: 20200223 Date Completed: 20200907 Latest Revision: 20200907
Update Code:
20240105
DOI:
10.1111/trf.15692
PMID:
32086956
Czasopismo naukowe
Background: To date, several cases of transfusion-transmitted ZIKV infections have been confirmed. Multiple studies detected prolonged occurrence of ZIKV viral RNA in whole blood as compared to plasma samples indicating potential ZIKV interaction with hematopoietic cells. Also, infection of cells from the granulocyte/macrophage lineage has been demonstrated. Patients may develop severe thrombocytopenia, microcytic anemia, and a fatal course of disease occurred in a patient with sickle cell anemia suggesting additional interference of ZIKV with erythroid and megakaryocytic cells. Therefore, we analyzed whether ZIKV propagates in or compartmentalizes with hematopoietic progenitor, erythroid, and megakaryocytic cells.
Methods: ZIKV RNA replication, protein translation and infectious particle formation in hematopoietic cell lines as well as primary CD34 + HSPCs and ex vivo differentiated erythroid and megakaryocytic cells was monitored using qRT-PCR, FACS, immunofluorescence analysis and infectivity assays. Distribution of ZIKV RNA and infectious particles in spiked red blood cell (RBC) units or platelet concentrates (PCs) was evaluated.
Results: While subsets of K562 and KU812Ep6 EPO cells supported ZIKV propagation, primary CD34 + HSPCs, MEP cells, RBCs, and platelets were non-permissive for ZIKV infection. In spiking studies, ZIKV RNA was detectable for 7 days in all fractions of RBC units and PCs, however, ZIKV infectious particles were not associated with erythrocytes or platelets.
Conclusion: Viral particles from plasma or contaminating leukocytes, rather than purified CD34 + HSPCs or the cellular component of RBC units or PCs, present the greatest risk for transfusion-transmitted ZIKV infections.
(© 2020 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies