Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

[Fluid-solid coupling numerical simulation on ideal porous structure of rat alveolar bone].

Tytuł:
[Fluid-solid coupling numerical simulation on ideal porous structure of rat alveolar bone].
Autorzy:
Luo R; Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P.R.China.
Zhao Z; Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, P.R.China.
Leng H; Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, P.R.China.
Huo B; Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P.R.China.
Źródło:
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi [Sheng Wu Yi Xue Gong Cheng Xue Za Zhi] 2020 Feb 25; Vol. 37 (1), pp. 87-95.
Typ publikacji:
Journal Article
Język:
Chinese
Imprint Name(s):
Publication: Chengdu : Sichuan Sheng sheng wu yi xue gong cheng xue hui
Original Publication: Chengdu : Sichuan Sheng sheng wu yi xue gong cheng xue hui : Hua xi yi ke da xue : Chengdu ke ji da xue,
MeSH Terms:
Porosity*
Tooth Movement Techniques*
Alveolar Process/*anatomy & histology
Periodontal Ligament/*physiology
Animals ; Finite Element Analysis ; Rats ; Stress, Mechanical ; X-Ray Microtomography
References:
Orthod Craniofac Res. 2009 May;12(2):120-8. (PMID: 19419455)
J Mech Behav Biomed Mater. 2014 Dec;40:307-313. (PMID: 25262201)
J Orofac Pain. 2005 Spring;19(2):159-67. (PMID: 15895839)
Ann Biomed Eng. 2013 Apr;41(4):814-26. (PMID: 23519534)
Arch Med Sci. 2015 Jun 19;11(3):638-46. (PMID: 26170859)
Bone. 2006 Nov;39(5):1043-1047. (PMID: 16860618)
Am J Physiol. 1997 Oct;273(4):E751-8. (PMID: 9357805)
Am J Physiol. 1997 Sep;273(3 Pt 1):C810-5. (PMID: 9316399)
Am J Physiol Cell Physiol. 2000 May;278(5):C989-97. (PMID: 10794673)
Angle Orthod. 2009 Jul;79(4):703-14. (PMID: 19537865)
Bone. 2007 Nov;41(5):745-51. (PMID: 17855178)
J Biomech Eng. 2015 Jan;137(1):. (PMID: 25363343)
J Biomech Eng. 2000 Aug;122(4):387-93. (PMID: 11036562)
J Appl Oral Sci. 2018 Jun 11;26:e20170326. (PMID: 29898174)
Am J Physiol Cell Physiol. 2001 Nov;281(5):C1635-41. (PMID: 11600427)
J Bone Miner Res. 2012 Mar;27(3):563-74. (PMID: 22113822)
Annu Rev Fluid Mech. 2009 Jan 1;41:347-374. (PMID: 20072666)
PLoS One. 2019 Jan 29;14(1):e0211004. (PMID: 30695073)
Eur J Orthod. 2003 Dec;25(6):569-78. (PMID: 14700262)
J Periodontal Res. 2015 Apr;50(2):160-72. (PMID: 24965968)
Integr Biol (Camb). 2014 Mar;6(3):289-99. (PMID: 24445362)
Neurosci Lett. 2008 Dec 12;447(2-3):175-8. (PMID: 18926882)
J Cell Biochem. 2011 Oct;112(10):2891-901. (PMID: 21618593)
J Korean Med Sci. 2015 May;30(5):552-8. (PMID: 25931785)
J Cell Biochem. 2006 Jan 1;97(1):56-70. (PMID: 16229015)
Zhonghua Kou Qiang Yi Xue Za Zhi. 2011 Apr;46(4):237-40. (PMID: 21612715)
Contributed Indexing:
Keywords: alveolar bone; fluid shear stress; fluid-solid coupling; porous structure; trabecula
Local Abstract: [Publisher, Chinese] 载荷作用下松质骨孔隙中的液体流动是刺激骨组织细胞产生生物学响应并调控骨重建的主要因素。因此,阐明牙槽骨内孔隙结构中的液体流动情况对于深入理解力学作用在牙槽骨内的传导过程以及牙齿发育、正畸牙移动等细胞水平的调控机制具有重要意义。此工作首先进行了大鼠牙齿正畸的动物实验,并基于微计算机断层扫描(micro-CT)图像构建了牙齿-牙周韧带-牙槽骨有限元模型,分析了咬合力或正畸力作用下牙槽骨中的应变状态;进而构建了理想模型,应用流固耦合数值模拟方法,分析了动态咬合力加载下无正畸加载、正畸拉伸加载、正畸压缩加载三种情况下骨内液体的流动情况。模拟结果表明,动态咬合力作用下,沿咬合方向排列的骨小梁表面流体剪应力水平高于非咬合方向排列的骨小梁,正畸力对骨内液体的流动没有影响。上述结果说明,临床上通过调整牙齿咬合面形状等方法改变咬合力的方向,会在牙槽骨表面引起不同水平的流体剪应力,进而刺激骨组织表面的细胞产生响应,最终调控牙槽骨的结构重建。.
Entry Date(s):
Date Created: 20200226 Date Completed: 20200317 Latest Revision: 20230701
Update Code:
20240105
PubMed Central ID:
PMC9927654
DOI:
10.7507/1001-5515.201903019
PMID:
32096381
Czasopismo naukowe
Fluid shear stress (FSS) caused by interstitial fluid flow within trabecular bone cavities under mechanical loading is the key factor of stimulating biological response of bone cells. Therefore, to investigate the FSS distribution within cancellous bone is important for understanding the transduction process of mechanical forces within alveolar bone and the regulatory mechanism at cell level during tooth development and orthodontics. In the present study, the orthodontic tooth movement experiment on rats was first performed. Finite element model of tooth-periodontal ligament-alveolar bone based on micro computed tomography (micro-CT) images was established and the strain field in alveolar bone was analyzed. An ideal model was constructed mimicking the porous structure of actual rat alveolar bone. Fluid flow in bone was predicted by using fluid-solid coupling numerical simulation. Dynamic occlusal loading with orthodontic tension loading or compression loading was applied on the ideal model. The results showed that FSS on the surface of the trabeculae along occlusal direction was higher than that along perpendicular to occlusal direction, and orthodontic force has little effect on FSS within alveolar bone. This study suggests that the orientation of occlusal loading can be changed clinically by adjusting the shape of occlusal surface, then FSS with different level could be produced on trabecular surface, which further activates the biological response of bone cells and finally regulates the remodeling of alveolar bone.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies