Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cryptochromes modulate E2F family transcription factors.

Tytuł:
Cryptochromes modulate E2F family transcription factors.
Autorzy:
Chan AB; Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
Huber AL; Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.; Centre de Recherche en Cancerologie de Lyon, 28 rue Laennec, 69008, Lyon, France.
Lamia KA; Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA. .
Źródło:
Scientific reports [Sci Rep] 2020 Mar 05; Vol. 10 (1), pp. 4077. Date of Electronic Publication: 2020 Mar 05.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Circadian Rhythm*
Gene Expression Regulation*
Cryptochromes/*physiology
E2F Transcription Factors/*metabolism
Transcription Factors/*metabolism
Ubiquitin-Protein Ligase Complexes/*metabolism
Animals ; E2F Transcription Factors/genetics ; Mice, Knockout ; Transcription Factors/genetics ; Ubiquitin-Protein Ligase Complexes/genetics
References:
Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99, https://doi.org/10.1016/j.tcb.2013.07.002 (2014). (PMID: 10.1016/j.tcb.2013.07.00223916625)
Hunt, T. & Sassone-Corsi, P. Riding tandem: circadian clocks and the cell cycle. Cell. 129, 461–464, https://doi.org/10.1016/j.cell.2007.04.015 (2007). (PMID: 10.1016/j.cell.2007.04.01517482541)
Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Sci. 302, 255–259, https://doi.org/10.1126/science.1086271 (2003). (PMID: 10.1126/science.1086271)
Fu, L. & Lee, C. C. The circadian clock: pacemaker and tumour suppressor. Nat. Rev. Cancer 3, 350–361, https://doi.org/10.1038/nrc1072 (2003). (PMID: 10.1038/nrc107212724733)
Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705, https://doi.org/10.1016/j.cell.2004.11.015 (2004). (PMID: 10.1016/j.cell.2004.11.01515550250)
Kowalska, E. et al. NONO couples the circadian clock to the cell cycle. Proc. Natl Acad. Sci. USA 110, 1592–1599, https://doi.org/10.1073/pnas.1213317110 (2013). (PMID: 10.1073/pnas.121331711023267082)
Bass, J. Circadian topology of metabolism. Nat. 491, 348–356, https://doi.org/10.1038/nature11704 (2012). (PMID: 10.1038/nature11704)
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Sci. 338, 349–354, https://doi.org/10.1126/science.1226339 (2012). (PMID: 10.1126/science.1226339)
Kriebs, A. et al. Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proc. Natl Acad. Sci. USA 114, 8776–8781, https://doi.org/10.1073/pnas.1704955114 (2017). (PMID: 10.1073/pnas.170495511428751364)
Jordan, S. D. et al. CRY1/2 Selectively Repress PPARdelta and Limit Exercise Capacity. Cell. Metab. 26, 243–255 e246, https://doi.org/10.1016/j.cmet.2017.06.002 (2017). (PMID: 10.1016/j.cmet.2017.06.002286832905546250)
Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nat. 480, 552–556, https://doi.org/10.1038/nature10700 (2011). (PMID: 10.1038/nature10700)
Qu, M., Duffy, T., Hirota, T. & Kay, S. A. Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates tissue-specific circadian networks. Proc. Natl. Acad. Sci. USA 115, E12305–E12312, https://doi.org/10.1073/pnas.1816411115 (2018). (PMID: 10.1073/pnas.181641111530530698)
Huber, A. L. et al. CRY2 and FBXL3 Cooperatively Degrade c-MYC. Mol. Cell. 64, 774–789, https://doi.org/10.1016/j.molcel.2016.10.012 (2016). (PMID: 10.1016/j.molcel.2016.10.012278400265123859)
Sakamoto, W. & Takenoshita, S. Overexpression of Both Clock and Bmal1 Inhibits Entry to S Phase in Human Colon Cancer Cells. Fukushima J. Med. Sci. 61, 111–124, https://doi.org/10.5387/fms.2015-11 (2015). (PMID: 10.5387/fms.2015-11263706825131586)
Gotoh, T. et al. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol. Biol. Cell. 25, 3081–3093, https://doi.org/10.1091/mbc.E14-05-0993 (2014). (PMID: 10.1091/mbc.E14-05-0993251032454230596)
Gotoh, T. et al. Model-driven experimental approach reveals the complex regulatory distribution of p53 by the circadian factor Period 2. Proc. Natl Acad. Sci. USA 113, 13516–13521, https://doi.org/10.1073/pnas.1607984113 (2016). (PMID: 10.1073/pnas.160798411327834218)
Correia, S. P. et al. The circadian E3 ligase complex SCF(FBXL3+CRY) targets TLK2. Sci. Rep. 9, 198, https://doi.org/10.1038/s41598-018-36618-3 (2019). (PMID: 10.1038/s41598-018-36618-3306555596336870)
Attwooll, C., Lazzerini Denchi, E. & Helin, K. The E2F family: specific functions and overlapping interests. EMBO J. 23, 4709–4716, https://doi.org/10.1038/sj.emboj.7600481 (2004). (PMID: 10.1038/sj.emboj.760048115538380535093)
Blanchet, E. et al. E2F transcription factor-1 regulates oxidative metabolism. Nat. Cell. Biol. 13, 1146–1152, https://doi.org/10.1038/ncb2309 (2011). (PMID: 10.1038/ncb230921841792)
Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat. Cell. Biol. 1, 14–19, https://doi.org/10.1038/8984 (1999). (PMID: 10.1038/898410559858)
Budhavarapu, V. N. et al. Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation. Cell. Cycle 11, 2030–2038, https://doi.org/10.4161/cc.20643 (2012). (PMID: 10.4161/cc.20643225804623359126)
Cohen, M. et al. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks. Cell. Cycle 12, 2992–3000, https://doi.org/10.4161/cc.26030 (2013). (PMID: 10.4161/cc.26030239741093875674)
Ping, Z., Lim, R., Bashir, T., Pagano, M. & Guardavaccaro, D. APC/C (Cdh1) controls the proteasome-mediated degradation of E2F3 during cell cycle exit. Cell. Cycle 11, 1999–2005, https://doi.org/10.4161/cc.20402 (2012). (PMID: 10.4161/cc.20402225804603359123)
Clijsters, L. et al. Cyclin F Controls Cell-Cycle Transcriptional Outputs by Directing the Degradation of the Three Activator E2Fs. Mol. Cell. 74, 1264–1277 e1267, https://doi.org/10.1016/j.molcel.2019.04.010 (2019). (PMID: 10.1016/j.molcel.2019.04.01031130363)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. U S A. 102, 15545–15550, https://doi.org/10.1073/pnas.0506580102 (2005). (PMID: 10.1073/pnas.0506580102161995171239896)
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell. Syst. 1, 417–425, https://doi.org/10.1016/j.cels.2015.12.004 (2015). (PMID: 10.1016/j.cels.2015.12.004267710214707969)
Gotoh, T., Vila-Caballer, M., Liu, J., Schiffhauer, S. & Finkielstein, C. V. Association of the circadian factor Period 2 to p53 influences p53′s function in DNA-damage signaling. Mol. Biol. Cell. 26, 359–372, https://doi.org/10.1091/mbc.E14-05-0994 (2015). (PMID: 10.1091/mbc.E14-05-0994254113414294682)
Griffin, E. A. Jr., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Sci. 286, 768–771, https://doi.org/10.1126/science.286.5440.768 (1999). (PMID: 10.1126/science.286.5440.768)
Wu, L. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nat. 414, 457–462, https://doi.org/10.1038/35106593 (2001). (PMID: 10.1038/35106593)
Kelleher, F. C., Rao, A. & Maguire, A. Circadian molecular clocks and cancer. Cancer Lett. 342, 9–18, https://doi.org/10.1016/j.canlet.2013.09.040 (2014). (PMID: 10.1016/j.canlet.2013.09.04024099911)
Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338, https://doi.org/10.1038/s41568-019-0143-7 (2019). (PMID: 10.1038/s41568-019-0143-731053804)
Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797, https://doi.org/10.1038/nrc2696 (2009). (PMID: 10.1038/nrc2696198513143616489)
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Sci. 343, 80–84, https://doi.org/10.1126/science.1246981 (2014). (PMID: 10.1126/science.1246981)
Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinforma. 23, 3251–3253, https://doi.org/10.1093/bioinformatics/btm369 (2007). (PMID: 10.1093/bioinformatics/btm369)
Grant Information:
R01 CA211187 United States CA NCI NIH HHS; R01 DK112927 United States DK NIDDK NIH HHS
Substance Nomenclature:
0 (Cry1 protein, mouse)
0 (Cry2 protein, mouse)
0 (Cryptochromes)
0 (E2F Transcription Factors)
0 (Transcription Factors)
EC 2.3.2.23 (Ubiquitin-Protein Ligase Complexes)
Entry Date(s):
Date Created: 20200307 Date Completed: 20201123 Latest Revision: 20240214
Update Code:
20240214
PubMed Central ID:
PMC7058038
DOI:
10.1038/s41598-020-61087-y
PMID:
32139766
Czasopismo naukowe
Early 2 factor (E2F) family transcription factors participate in myriad cell biological processes including: the cell cycle, DNA repair, apoptosis, development, differentiation, and metabolism. Circadian rhythms influence many of these phenomena. Here we find that a mammalian circadian rhythm component, Cryptochrome 2 (CRY2), regulates E2F family members. Furthermore, CRY1 and CRY2 cooperate with the E3 ligase complex SKP-CULLIN-FBXL3 (SCF FBXL3 ) to reduce E2F steady state protein levels. These findings reveal an unrecognized molecular connection between circadian clocks and cell cycle regulation and highlight another mechanism to maintain appropriate E2F protein levels for proper cell growth.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies