Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evolutionary and Molecular Characterization of liver-enriched gene 1.

Tytuł:
Evolutionary and Molecular Characterization of liver-enriched gene 1.
Autorzy:
Dang Y; Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
Wang JY; Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
Liu C; Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
Zhang K; Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
Jinrong P; Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
He J; Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China. .
Źródło:
Scientific reports [Sci Rep] 2020 Mar 06; Vol. 10 (1), pp. 4262. Date of Electronic Publication: 2020 Mar 06.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Evolution, Molecular*
Proteins/*genetics
Animals ; Biological Evolution ; Cloning, Molecular ; Genome ; Genomics/methods ; Humans ; Mice ; Phylogeny ; Proteins/chemistry ; Sequence Analysis, RNA ; Structure-Activity Relationship ; Zebrafish Proteins/chemistry ; Zebrafish Proteins/genetics
References:
Chang, C. et al. liver-enriched gene 1a and 1b encode novel secretory proteins essential for normal liver development in zebrafish. PLoS One 6, e22910 (2011). (PMID: 21857963315347910.1371/journal.pone.0022910)
Enjapoori, A. K. et al. Monot reme lactation protein is highly expressed in monotreme milk and provides antimicrobial protection. Genome Biol. Evol. 6, 2754–2773 (2014). (PMID: 25245409422433610.1093/gbe/evu209)
Cheng, W. et al. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev. Biol. 294, 482–496 (2006). (PMID: 1663115810.1016/j.ydbio.2006.03.018)
Pini, T. et al. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J. Proteome Res. 15, 3700–3711 (2016). (PMID: 2763615010.1021/acs.jproteome.6b00530)
Ramachandran, P. et al. Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res. 5, 1493–1503 (2006). (PMID: 1674000210.1021/pr050492k)
Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7, a016592 (2015). (PMID: 25646380431593110.1101/cshperspect.a016592)
Tilley, S. A. & Birshtein, B. K. Unequal sister chromatid exchange. A mechanism affecting Ig gene arrangement and expression. J. Exp. Med. 162, 675–694 (1985). (PMID: 392693710.1084/jem.162.2.675)
Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108 (2010). (PMID: 2005198610.1038/nrg2689)
Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999). (PMID: 101011751460548)
Rastogi, S. & Liberles, D. A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005). (PMID: 15831095111258810.1186/1471-2148-5-28)
Zhu, Z. H., Hu, M. J., Chang, C. Q. & Peng, J. R. Analysis of expression pattern of zebrafish leg1 homologus gene mu-leg1 in mouse. Yi Chuan 34, 1174–1180 (2012). (PMID: 23017459)
Aigner, B. et al. Transgenic pigs as models for translational biomedical research. J. Mol. Med. (Berl) 88, 653–664 (2010). (PMID: 10.1007/s00109-010-0610-9)
Zhang, Z. et al. Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 26, 3986–3990 (1998). (PMID: 970550914780310.1093/nar/26.17.3986)
Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997). (PMID: 914914310.1006/jmbi.1997.0951)
Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203 (2017). (PMID: 2789967410.1093/nar/gkw1129)
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). (PMID: 219888352198883510.1038/msb.2011.75)
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874 (2016). (PMID: 2700490410.1093/molbev/msw054)
Darriba, D. et al. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 37, 291–294 (2020). (PMID: 3143207010.1093/molbev/msz189)
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012). (PMID: 22357727332976510.1093/sysbio/sys029)
Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. USA 109, 19333–19338 (2012). (PMID: 2312962810.1073/pnas.1213199109)
Mello, B. Estimating TimeTrees with MEGA and the TimeTree Resource. Mol. Biol. Evol. 35, 2334–2342 (2018). (PMID: 2993130610.1093/molbev/msy133)
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 34, 1812–1819 (2017). (PMID: 2838784110.1093/molbev/msx116)
Hu, B. et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296–1297 (2015). (PMID: 2550485010.1093/bioinformatics/btu817)
Lin, J. J., Wang, F. Y., Li, W. H. & Wang, T. Y. The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Sci. Rep. 7, 15568 (2017). (PMID: 29138475568607110.1038/s41598-017-15868-7)
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–612 (2006). (PMID: 16845082153880410.1093/nar/gkl315)
Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics 8, 77–80 (2010). (PMID: 20451164505411610.1016/S1672-0229(10)60008-3)
He, J., Wang, Q., Ye, J., Hu, X. & Li, N. Identification of porcine polycystic kidney disease 1 (PKD1) gene: molecular cloning, expression profile, and implication in disease model. Gene 490, 37–46 (2011). (PMID: 2194568810.1016/j.gene.2011.08.027)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001). (PMID: 118466091184660910.1006/meth.2001.1262)
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). (PMID: 25950237529820210.1038/nprot.2015.053)
Barthel, D., Hirst, J. D., Blazewicz, J., Burke, E. K. & Krasnogor, N. ProCKSI: a decision support system for Protein (structure) Comparison, Knowledge, Similarity and Information. BMC Bioinformatics 8, 416 (2007). (PMID: 17963510222265310.1186/1471-2105-8-416)
Birzele, F., Gewehr, J. E., Csaba, G. & Zimmer, R. Vorolign–fast structural alignment using Voronoi contacts. Bioinformatics 23, e205–211 (2007). (PMID: 1723709310.1093/bioinformatics/btl294)
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). (PMID: 28263959560014810.1038/nmeth.4197)
Sahraeian, S. M. E. et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat. Commun. 8, 59 (2017). (PMID: 28680106549858110.1038/s41467-017-00050-4)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 255162812551628110.1186/s13059-014-0550-8)
Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009). (PMID: 1903336310.1093/nar/gkn923)
Huang, D. W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–175 (2007). (PMID: 17576678193316910.1093/nar/gkm415)
Gorr, T., Kleinschmidt, T. & Fricke, H. Close tetrapod relationships of the coelacanth Latimeria indicated by haemoglobin sequences. Nature 351, 394–397 (1991). (PMID: 203428810.1038/351394a0)
Newman, J. et al. Structural characterization of a novel monotreme-specific protein with antimicrobial activity from the milk of the platypus. Acta Crystallogr. F. Struct. Biol. Commun. 74, 39–45 (2018). (PMID: 29372906594769110.1107/S2053230X17017708)
Bourlat, S. J., Nielsen, C., Lockyer, A. E., Littlewood, D. T. & Telford, M. J. Xenoturbella is a deuterostome that eats molluscs. Nature 424, 925–928 (2003). (PMID: 1293118410.1038/nature0185112931184)
Turbeville, J. M., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994). (PMID: 8078403)
Amores, A., Catchen, J., Ferrara, A., Fontenot, Q. & Postlethwait, J. H. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188, 799–808 (2011). (PMID: 21828280317608910.1534/genetics.111.127324)
Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol. 26, 47–59 (2009). (PMID: 1884268810.1093/molbev/msn222)
Sacerdot, C., Louis, A., Bon, C., Berthelot, C. & Roest Crollius, H. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 19, 166 (2018). (PMID: 30333059619330910.1186/s13059-018-1559-1)
Amores, A. et al. Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714 (1998). (PMID: 983156310.1126/science.282.5394.1711)
Taylor, J. S., Braasch, I., Frickey, T., Meyer, A. & Van de Peer, Y. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res. 13, 382–390 (2003). (PMID: 1261836843026610.1101/gr.640303)
Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004). (PMID: 1549691410.1038/nature03025)
Ohno, S., Wolf, U. & Atkin, N. B. Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187 (1968). (PMID: 566263210.1111/j.1601-5223.1968.tb02169.x)
Johnson, K. R., Wright, J. E. Jr. & May, B. Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116, 579–591 (1987). (PMID: 36230801203170)
Bloch, J. I., Silcox, M. T., Boyer, D. M. & Sargis, E. J. New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proc. Natl. Acad. Sci. USA 104, 1159–1164 (2007). (PMID: 1722983510.1073/pnas.0610579104)
Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001). (PMID: 1174320010.1126/science.1067179)
Waddell, P. J., Kishino, H. & Ota, R. A phylogenetic foundation for comparative mammalian genomics. Genome Inform. 12, 141–154 (2001). (PMID: 11791233)
Kriegs, J. O., Churakov, G., Jurka, J., Brosius, J. & Schmitz, J. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet. 23, 158–161 (2007). (PMID: 1730727110.1016/j.tig.2007.02.002)
Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009). (PMID: 19341461267404810.1186/1471-2148-9-71)
Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000). (PMID: 1107345210.1126/science.290.5494.1151)
Hu, M. et al. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet. 12, e1005881 (2016). (PMID: 26901320476432310.1371/journal.pgen.1005881)
Lin, T. Y. et al. Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 9, e101980 (2014). (PMID: 25000307408494710.1371/journal.pone.0101980)
Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. Biol. Sci. 256, 119–124 (1994). (PMID: 802924010.1098/rspb.1994.0058)
Nowak, M. A., Boerlijst, M. C., Cooke, J. & Smith, J. M. Evolution of genetic redundancy. Nature 388, 167–171 (1997). (PMID: 921715510.1038/406189217155)
Freeman, T. C. et al. A gene expression atlas of the domestic pig. BMC Biol. 10, 90 (2012). (PMID: 23153189381429010.1186/1741-7007-10-90)
Jones, J. R. et al. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 102, 6207–6212 (2005). (PMID: 1583381810.1073/pnas.0306743102)
Substance Nomenclature:
0 (Liver enriched gene 1 protein, mouse)
0 (Proteins)
0 (Zebrafish Proteins)
0 (leg1.1 protein, zebrafish)
0 (leg1.2 protein, zebrafish)
Entry Date(s):
Date Created: 20200308 Date Completed: 20201123 Latest Revision: 20210306
Update Code:
20240105
PubMed Central ID:
PMC7060313
DOI:
10.1038/s41598-020-61208-7
PMID:
32144352
Czasopismo naukowe
Liver-enriched gene 1 (Leg1) is a newly identified gene with little available functional information. To evolutionarily and molecularly characterize Leg1 genes, a phylogenetic study was first conducted, which indicated that Leg1 is a conserved gene that exists from bacteria to mammals. During the evolution of mammals, Leg1s underwent tandem duplications, which gave rise to Leg1a, Leg1b, and Leg1c clades. Analysis of the pig genome showed the presence of all three paralogs of pig Leg1 genes (pLeg1s), whereas only Leg1a could be found in the human (hLeg1a) or mouse (mLeg1a) genomes. Purifying force acts on the evolution of Leg1 genes, likely subjecting them to functional constraint. Molecularly, pLeg1a and its coded protein, pig LEG1a (pLEG1a), displayed high similarities to its human and mouse homologs in terms of gene organization, expression patterns, and structures. Hence, pLeg1a, hLeg1a, and mLeg1a might preserve similar functions. Additionally, expression analysis of the three Leg1as suggested that eutherian Leg1as might have different functions from those of zebrafish and platypus due to subfunctionalization. Therefore, pLeg1a might provide essential information about eutherian Leg1a. Moreover, a preliminary functional study using RNA-seq suggested that pLeg1a is involved in the lipid homeostasis. In conclusion, our study provides some basic information on the aspects of evolution and molecular function, which could be applied for further validation of Leg1 using pig models.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies