Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Synthesis, molecular modelling and biological activity of some pyridazinone derivatives as selective human monoamine oxidase-B inhibitors.

Tytuł:
Synthesis, molecular modelling and biological activity of some pyridazinone derivatives as selective human monoamine oxidase-B inhibitors.
Autorzy:
Özdemir Z; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey. .
Alagöz MA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey.
Uslu H; Department of Anesthesiology, Vocational School of Health Services, Fırat University, 23119, Elazığ, Turkey.
Karakurt A; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey.
Erikci A; Department of Biochemistry, Faculty of Pharmacy, Lokman Hekim University, 06510, Ankara, Turkey.
Ucar G; Department of Biochemistry, Faculty of Pharmacy, Lokman Hekim University, 06510, Ankara, Turkey.
Uysal M; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey.
Źródło:
Pharmacological reports : PR [Pharmacol Rep] 2020 Jun; Vol. 72 (3), pp. 692-704. Date of Electronic Publication: 2020 Mar 06.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2020- : Cham, Switzerland : Springer International Publishing
Original Publication: Kraków, Poland : Institute of Pharmacology, Polish Academy of Sciences, c2005-
MeSH Terms:
Monoamine Oxidase Inhibitors/*chemical synthesis
Monoamine Oxidase Inhibitors/*pharmacology
Pyridazines/*chemical synthesis
Pyridazines/*pharmacology
Computer Simulation ; Drug Liberation ; Hep G2 Cells ; Humans ; Kinetics ; Models, Molecular ; Molecular Docking Simulation ; Molecular Structure ; Monoamine Oxidase ; Monoamine Oxidase Inhibitors/chemistry ; Pyridazines/chemistry ; Structure-Activity Relationship
References:
Kumar B, Prakash V, Kumar V. A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities. Curr Drug Targets. 2017;18:87–97. (PMID: 26648064)
Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60:1527–33. (PMID: 186528592630537)
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol. 2016;7:340. (PMID: 278036665067815)
Evranos-Aksoz B, Ucar G, Tas ST, Aksoz E, Yelekci K, Erikci A, et al. New human monoamine oxidase A inhibitors with potential anti-depressant activity: design, synthesis, biological screening and evaluation of pharmacological activity. Comb Chem High Throughput Screen. 2017;20(6):461–73. (PMID: 28474547)
Gunal SE, Tuncel ST, Gokhan-Kelekci N, Ucar G, Dursun BY, Sag-Erdem S, et al. Asymmetric synthesis, molecular modeling and biological evaluation of 5-methyl-3-aryloxazolidine-2,4-dione enantiomers as monoamine oxidase (MAO) inhibitors. Bioorg Chem. 2018;77:608–18.
Mathew B, Ucar G, Rapheal C, Mathew GE, Joy M, Machaba KE, et al. Characterization of thienylchalcones as hMAO-B inhibitors: synthesis, biochemistry and molecular dynamics studies. Chem Select. 2017;2(34):11113–9.
Pathak A, Srivastava AK, Singour PK, Gouda P. Synthetic and natural monoamine oxidase inhibitors as potential lead compounds for effective therapeutics. Cent Nerv Syst Agents Med Chem. 2016;16(2):81–97. (PMID: 26104056)
Chimenti F, Bolasco A, Secci D, Chimenti P, Granese A, Carradori S, et al. Investigations on the 2-thiazolylhydrazyne scaffold: synthesis and molecular modeling of selective human monoamine oxidase inhibitors. Bioorg Med Chem. 2010;18:5715–23. (PMID: 20615716)
Entzeroth M, Ratty AK. Monoamine oxidase inhibitors—revisiting a therapeutic principle. Open J Depression. 2017;6:31–68.
Kumar B, Sheetal Mantha AK, Kumar V. Recent developments on the structure–activityrelationship studies of MAO inhibitors and their role in different neurological disorders. RSC Adv. 2016;6:42660–83.
Secci D, Bolasco A, Carradori S, Ascenzio MD, Nescatelli R, Yanez M. Recent advances in the development of selective human MAO-B inhibitors: (hetero)arlylidene-(4-substituted-thiazol-2-yl) hydrazines. Eur J Med Chem. 2012;58:405–17. (PMID: 23153812)
Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem. 2007;50(23):5848–52. (PMID: 17915852)
Can NÖ, Osmaniye D, Levent S, Sağlık BN, Korkut B, Atlı Ö, et al. Design, synthesis and biological assessment of new thiazolylhydrazine derivatives as selective and reversible hMAO-A inhibitors. Eur J Med Chem. 2018;144:68–81. (PMID: 29248751)
Akhtar W, Shaquiquzzaman M, Akhter M, Verma G, Khan MF, Alam MM. The therapeutic journey of pyridazinone. Eur J Med Chem. 2016;123:256–81. (PMID: 27484513)
Geng P-F, Liu X-Q, Zhao T-Q, Wang C-C, Li Z-H, Zhang J, et al. Design, synthesis and in vitro biological evaluation of novel [1,2,3] triazolo[4,5-d]pyrimidine derivatives containing a thiosemicarbazide moiety. Eur J Med Chem. 2018;146:147–56. (PMID: 29407946)
Banerjee PS. Various biological activities of pyridazinone ring derivatives. Asian J Chem. 2011;23(5):1905–10.
Nagle P, Pawar Y, Sonawane A, Bhosale S, More D. Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents. Med Chem Res. 2014;23:918–26.
Utku S, Gökçe M, Aslan G, Bayram G, Ülger M, Emekdaş G, et al. Synthesisand in vitroantimycobacterialactivities of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2(substituted/nonsubstituted acetophenone) hydrazone. Turk J Chem. 2011;35:331–9.
Şahin MF, Badıçoglu B, Gökçe M, Küpeli E, Yeşilada E. Synthesis and analgesic and antiinflammatory activity of methyl [6-substitue-3(2H)- pyridazinone-2-yl]acetate derivatives. Arch Pharm. 2004;33:445–52.
Siddiqui AA, Mishra R, Shaharyar M. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives. Eur J Med Chem. 2010;45:2283–90. (PMID: 20189270)
Siddiqui AA, Mishra R, Shaharyar M, Husain A, Rashid M, Pal P. Triazole incorporated pyridazinones as a new class of antihypertensive agents: design, synthesis and in vivo screening. Bioorg Med Chem Lett. 2011;21:1023–6. (PMID: 21211966)
Yamali C, Ozan GH, Kahya B, Çobanoğlu S, Şüküroğlu MK, Doğruer DS. Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Med Chem Res. 2015;24:1210–7.
Rathish IG, Javed K, Ahmad S, Bano S, Alam MS, Akhter M, et al. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones. Eur J Med Chem. 2012;49:304–9. (PMID: 22305543)
El-Ghaffar NFA, Mohamed MK, Kadah MS, Radwan AM, Said GH, Abd SN. Synthesis and anti-tumor activities of some new pyridazinones containing the 2-phenyl-1H-indolyl moiety. J Chem Pharm Res. 2011;3(3):248–59.
Malinka W, Kaczmarz M, Redzicka A. Antitumor in vitro evaluation of certain derivatives of pyrido-1,2-thiazines. Acta Pol Pharm. 2014;61(Suppl):100–2.
Utku S, Gökçe M, Orhan İ, Şahin MF. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal) hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro. Arzneimmittelforschug. 2011;61:1–7.
Önkol T, Gökçe M, Orhan İ, Kaynak F. Design, synthesis and evaluation of some novel 3(2H)-pyridazinone-2-yl acetohydrazides as acetylcholinesterase and butyrylcholnesterase inhibitors. Org Commun. 2014;6(1):55–67.
Özdemir Z, Gökçe M, Karakurt A. Synthesis and analgesic, antiinflammatory and antimicrobial evaluation of 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substitutedbenzal)hydrazine derivatives. FABAD J Pharm Sci. 2012;37(2):111–22.
Özdemir Z, Yılmaz H, Sarı S, Karakurt A, Şenol FS, Uysal M. Design, synthesis, and molecular modeling of new 3(2H)-pyridazinone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med Chem Res. 2017;26(10):2293–308.
Yáñez M, Fraiz N, Cano E, Orallo F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun. 2006;344:688–95. (PMID: 16631124)
Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, et al. Synthesis, stereochemical identification, and selective inhibitory activity against human monoamine oxidase-B of 2-methylcyclohexylidene-(4-arylthiazol-2-yl)hydrazones. J Med Chem. 2008;51:4874–80. (PMID: 18666768)
Chimenti F, Carradori S, Secci D, Bolasco A, Bizzarri B, Chimenti P, et al. Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3, 5-di (hetero) aryl-4, 5-dihydro-(1H)-pyrazole derivatives. Eur J Med Chem. 2010;45(2):800–4. (PMID: 19926363)
Jhala DD, Chettiar SS, Singh JK. Optimization and validation of an in vitro blood brain barrier permeability assay using artificial lipid membrane. J Bioequiv Availab. 2012;S14:1–5.
Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood–brain barrier. Eur J Med Chem. 2003;38(3):223–32. (PMID: 12667689)
Wu CF, Bertorelli R, Sacconi M, Pepeu G, Consolo S. Decrease of brain acetylcholine release in aging freely-moving rats detected by microdialysis. Neurobiol Aging. 1988;9:357–61. (PMID: 3185854)
Banks JL, Beard HS, Cao YX, Cho AE, Damm W, Farid R, et al. Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem. 2005;26:1752–80. (PMID: 162115392742605)
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–42. (PMID: 102472102472)
Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21:681–91. (PMID: 17899391)
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–49. (PMID: 1502786515027865)
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–96. (PMID: 1703412517034125)
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–9. (PMID: 1502786615027866)
Morris G, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. (PMID: 27606382760638)
Badavath VN, Ucar G, Sinha BN, Mondal SK, Jayakrapash V. Monoamine oxidase inhibitory activity of novel pyrazoline analogues: curcumin based design and synthesis-II. Chem Select. 2016;1(18):5879–84.
Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. PNAS. 2003;11(17):9750–5.
Iacovino LG, Magnani F, Binda C. The structure of monoamine oxidases: past, present, and future. J Neural Transm. 2018;125(11):1567–79. (PMID: 30167931)
Kumar B, Sheetal Mantha AK, Kumar V, Rauhamäki S, Postila PA, Niinivehmas S, et al. Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors. Bioorg Chem. 2018;77:252–62. (PMID: 29421700)
Rauhamäki S, Postila PA, Niinivehmas S, Kortet S, Schildt E, Pasanen M, et al. Structure-activity relationship analysis of 3-phenylcoumarin-based monoamine oxidase B inhibitors. Front Chem. 2018;6:41. (PMID: 295525565840146)
Ramsay RR, Tipton KF. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules. 2017;22(7):1192. (PMID: 6152246)
Seth S, Sharma A, Raj D. Pyridazinones: a wonder nucleus with scaffold of pharmacological activities. Am J Biol Pharm Res. 2014;1(3):105–16.
Contributed Indexing:
Keywords: Molecular docking; Monoamine oxidase inhibition; Pyridazinone
Substance Nomenclature:
0 (Monoamine Oxidase Inhibitors)
0 (Pyridazines)
EC 1.4.3.4 (Monoamine Oxidase)
Entry Date(s):
Date Created: 20200308 Date Completed: 20210412 Latest Revision: 20210622
Update Code:
20240105
DOI:
10.1007/s43440-020-00070-w
PMID:
32144745
Czasopismo naukowe
Background: Since brain neurotransmitter levels are associated with the pathology of various neurodegenerative diseases like Parkinson and Alzheimer, monoamineoxidase (MAO) plays a critical role in balancing these neurotransmitters in the brain. MAO isoforms appear as promising drug targets for the development of central nervous system agents. Pyridazinones have a broad array of biological activities. Here, six pyridazinone derivatives were synthesized and their human monoamine oxidase inhibitory activities were evaluated by molecular docking studies, in silico ADME prediction and in vitro biological screening tests.
Methods: The compounds were synthesized by the reaction of different piperazine derivatives with 3 (2H)-pyridazinone ring and MAO-inhibitory effects were investigated. Docking studies were conducted with Maestro11.8 software.
Results: Most of the synthesized compounds inhibited hMAO-B selectively except compound 4f. Compounds 4a-4e inhibited hMAO-B selectively and reversibly in a competitive mode. Compound 4b was found as the most potent (k i  = 0.022 ± 0.001 µM) and selective (SI (Ki hMAO-A/hMAO-B ) = 206.82) hMAO-B inhibitor in this series. The results of docking studies were found to be consistent with the results of the in vivo activity studies. Compounds 4a-4e were found to be non-toxic to HepG2 cells at 25 μM concentration. In silico calculations of ADME properties indicated that the compounds have good pharmacokinetic profiles.
Conclusion: It was concluded that 4b is possibly recommended as a promising nominee for the design and development of new pyridazinones which can be used in the treatment of neurological diseases.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies