Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ubiquitination of renal ENaC subunits in vivo.

Tytuł:
Ubiquitination of renal ENaC subunits in vivo.
Autorzy:
Frindt G; Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.
Bertog M; Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Korbmacher C; Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Palmer LG; Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.
Źródło:
American journal of physiology. Renal physiology [Am J Physiol Renal Physiol] 2020 May 01; Vol. 318 (5), pp. F1113-F1121. Date of Electronic Publication: 2020 Mar 16.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Bethesda, Md. : American Physiological Society, c1997-
MeSH Terms:
Ubiquitination*
Epithelial Sodium Channels/*metabolism
Kidney/*metabolism
Liddle Syndrome/*metabolism
Aldosterone/blood ; Animals ; Disease Models, Animal ; Epithelial Sodium Channels/genetics ; Female ; Liddle Syndrome/genetics ; Male ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mutation ; Proteolysis ; Rats, Sprague-Dawley
References:
EMBO J. 2001 Dec 17;20(24):7052-9. (PMID: 11742982)
Am J Physiol Renal Physiol. 2003 Aug;285(2):F310-8. (PMID: 12684224)
J Biol Chem. 2007 Mar 2;282(9):6153-60. (PMID: 17199078)
J Biol Chem. 1999 Dec 31;274(53):37834-9. (PMID: 10608847)
J Biol Chem. 2007 Jul 13;282(28):20207-12. (PMID: 17502380)
Kidney Int. 2013 May;83(5):811-24. (PMID: 23447069)
J Gen Physiol. 2016 Mar;147(3):217-27. (PMID: 26880754)
Pflugers Arch. 2009 May;458(1):111-35. (PMID: 19277701)
J Gen Physiol. 1993 Jul;102(1):25-42. (PMID: 8397276)
Am J Physiol Renal Physiol. 2001 Apr;280(4):F675-82. (PMID: 11249859)
J Am Soc Nephrol. 1999 Dec;10(12):2527-33. (PMID: 10589691)
J Biol Chem. 2008 Mar 7;283(10):6033-9. (PMID: 18174164)
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. (PMID: 29923764)
Annu Rev Physiol. 2009;71:361-79. (PMID: 18928407)
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F967-F977. (PMID: 31390232)
J Gen Physiol. 2002 May;119(5):427-42. (PMID: 11981022)
J Clin Invest. 1999 Oct;104(7):R19-23. (PMID: 10510339)
J Biol Chem. 1999 Jun 11;274(24):16973-8. (PMID: 10358046)
Annu Rev Physiol. 2002;64:877-97. (PMID: 11826291)
FASEB J. 2001 Jan;15(1):204-214. (PMID: 11149908)
J Gen Physiol. 2012 Oct;140(4):375-89. (PMID: 22966015)
Curr Opin Nephrol Hypertens. 2018 Sep;27(5):364-372. (PMID: 29916852)
J Biol Chem. 2009 Jul 31;284(31):20447-51. (PMID: 19401469)
J Physiol. 2008 Oct 1;586(19):4587-608. (PMID: 18669538)
Curr Opin Pharmacol. 2014 Apr;15:33-46. (PMID: 24721652)
Endocrinology. 2005 Dec;146(12):5079-85. (PMID: 16150899)
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2805-8. (PMID: 16477034)
J Biol Chem. 2002 Jan 4;277(1):5-8. (PMID: 11696533)
J Gen Physiol. 2008 Jun;131(6):617-27. (PMID: 18504317)
Kidney Int. 2000 Mar;57(3):809-15. (PMID: 10720933)
Am J Physiol Renal Physiol. 2006 Sep;291(3):F683-93. (PMID: 16554417)
Elife. 2018 Sep 25;7:. (PMID: 30251954)
Nat Genet. 1996 Mar;12(3):248-53. (PMID: 8589714)
Am J Physiol Cell Physiol. 2004 Jan;286(1):C190-4. (PMID: 12967915)
J Biol Chem. 2013 Feb 22;288(8):5389-97. (PMID: 23297398)
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2514-9. (PMID: 10051674)
J Biol Chem. 2008 Feb 22;283(8):4602-11. (PMID: 18086683)
Hypertension. 2016 Jun;67(6):1256-62. (PMID: 27170740)
Nature. 1997 Oct 9;389(6651):607-10. (PMID: 9335501)
EMBO J. 1997 Nov 3;16(21):6325-36. (PMID: 9351815)
Am J Physiol Renal Physiol. 2012 Aug 15;303(4):F540-50. (PMID: 22622459)
J Biol Chem. 2007 Jul 13;282(28):20180-90. (PMID: 17522058)
Am J Physiol Renal Physiol. 2000 Aug;279(2):F252-8. (PMID: 10919843)
Biochem J. 2007 Jul 1;405(1):147-55. (PMID: 17381423)
J Physiol. 2008 Jan 15;586(2):459-75. (PMID: 18006588)
EMBO J. 1996 May 15;15(10):2371-80. (PMID: 8665844)
Grant Information:
R01 DK111380 United States DK NIDDK NIH HHS
Contributed Indexing:
Keywords: Liddle syndrome; epithelial Na+ channel; mice; proteolysis; rats
Substance Nomenclature:
0 (Epithelial Sodium Channels)
0 (Scnn1b protein, mouse)
4964P6T9RB (Aldosterone)
Entry Date(s):
Date Created: 20200317 Date Completed: 20200714 Latest Revision: 20210502
Update Code:
20240105
PubMed Central ID:
PMC7294337
DOI:
10.1152/ajprenal.00609.2019
PMID:
32174140
Czasopismo naukowe
Ubiquitination of the epithelial Na + channel (ENaC) in epithelial cells may influence trafficking and hormonal regulation of the channels. We assessed ENaC ubiquitination (ub-ENaC) in mouse and rat kidneys using affinity beads to capture ubiquitinated proteins from tissue homogenates and Western blot analysis with anti-ENaC antibodies. Ub-αENaC was observed primarily as a series of proteins of apparent molecular mass of 40-70 kDa, consistent with the addition of variable numbers of ubiquitin molecules primarily to the NH 2 -terminal cleaved fragment (~30 kDa) of the subunit. No significant Ub-βENaC was detected, indicating that ubiquitination of this subunit is minimal. For γENaC, the protein eluted from the affinity beads had the same apparent molecular mass as the cleaved COOH-terminal fragment of the subunit (~65 kDa). This suggests that the ubiquitinated NH 2 terminus remains attached to the COOH-terminal moiety during isolation through disulfide bonds. Consistent with this, under nonreducing conditions, eluates contained material with increased molecular mass (90-150 kDa). In mice with a Liddle syndrome mutation (β566X) deleting a putative binding site for the ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-2, the amount of ub-γENaC was reduced as expected. To assess aldosterone dependence of ubiquitination, we fed rats either control or low-Na + diets for 7 days before kidney harvest. Na + depletion increased the amounts of ub-αENaC and ub-γENaC by three- to fivefold, probably reflecting increased amounts of fully cleaved ENaC. We conclude that ubiquitination occurs after complete proteolytic processing of the subunits, contributing to retrieval and/or disposal of channels expressed at the cell surface. Diminished ubiquitination does not appear to be a major factor in aldosterone-dependent ENaC upregulation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies