Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

The immune checkpoints Cytotoxic T lymphocyte antigen-4 and Lymphocyte activation gene-3 expression is up-regulated in acute myeloid leukemia.

Tytuł :
The immune checkpoints Cytotoxic T lymphocyte antigen-4 and Lymphocyte activation gene-3 expression is up-regulated in acute myeloid leukemia.
Autorzy :
Radwan SM; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
Elleboudy NS; Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
Nabih NA; Internal Medicine Department, Clinical Hematology division, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Kamal AM; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
Pokaż więcej
Źródło :
HLA [HLA] 2020 Jul; Vol. 96 (1), pp. 3-12. Date of Electronic Publication: 2020 Mar 29.
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Original Publication: Oxford : Wiley Blackwell, [2016]-
MeSH Terms :
Leukemia, Myeloid, Acute*/diagnosis
Leukemia, Myeloid, Acute*/genetics
T-Lymphocytes, Cytotoxic*
Alleles ; CTLA-4 Antigen/genetics ; Humans ; Lymphocyte Activation
References :
Maria AVM, Sergio AQ, Karl SP. Checkpoint blockade in cancer immunotherapy: squaring the circle. Eur Med J Oncol. 2015;3:70-76.
Knaus HA, Kanakry CG, Luznik L, Gojo I. Immunomodulatory drugs: immune checkpoint agents in acute Leukemia. Curr Drug Targets. 2017;18:315-331. CDT-EPUB-67384 [pii].
Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. In: advances in immunology. Adv Immunol. 2006;90:297-339.
Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50:165-111.
De Sousa LA, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not all immune checkpoints are created equal. Front Immunol. 2018;9:1909.
Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol. 2006;18:206-213.
Shapiro M et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102:874-882.
Radwan SM, Hamdy NM, Hegab HM, El-Mesallamy HO. Beclin-1 and hypoxia-inducible factor-1alpha genes expression: potential biomarkers in acute leukemia patients. Cancer Biomark. 2016;16:619-626.
Moarii M, Papaemmanuil E. Classification and risk assessment in AML: integrating cytogenetics and molecular profiling. Hematology. 2017;2017:37-44.
Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. New Eng J Med. 2015;373:1136-1152.
Stahl M, Lu B, Kim T (2017) Novel therapies for acute myeloid Leukemia: are we finally breaking the deadlock? Targeted oncology 12
Nunez R. Flow cytometry: principles and instrumentation. Curr Issues Mol Biol. 2001;3:39-45.
Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986;83:2934-2938.
Anastasi J, Le Beau MM, Vardiman JW, Westbrook CA. Detection of numerical chromosomal abnormalities in neoplastic hematopoietic cells by in situ hybridization with a chromosome-specific probe. Am J Pathol. 1990;136:131-139.
Fischer K, Scholl C, Salat J, et al. Design and validation of DNA probe sets for a comprehensive interphase cytogenetic analysis of acute myeloid leukemia. Blood. 1996;88:3962-3971.
Frohling S, Skelin S, Liebisch C, et al. Comparison of cytogenetic and molecular cytogenetic detection of chromosome abnormalities in 240 consecutive adult patients with acute myeloid leukemia. J Clin Oncol. 2002;20:2480-2485.
Wians FH. Clinical laboratory tests: which, why, and what do the results mean? Lab Med. 2009;40:105-113.
Wang ML, Bailey NG. Acute myeloid Leukemia genetics: risk stratification and implications for therapy. Arch Pathol Lab Med. 2015;139:1215-1223.
Gelao L, Criscitiello C, Esposito A, Goldhirsch A, Curigliano G. Immune checkpoint blockade in cancer treatment: a double-edged sword cross-targeting the host as an “innocent bystander”. Toxins. 2014;6:914-933.
Karabon L, Markiewicz M, Kosmaczewska A, et al. Pretransplant donor and recipient CTLA-4 mRNA and protein levels as a prognostic marker for aGvHD in allogeneic hematopoietic stem cell transplantation. Immunol Lett. 2015;165:52-59.
Korman A, Peggs K, Allison J. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297-339.
Andrews LP, Marciscano AE, Drake CG, Vignali DAA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80-96.
Revenfeld ALS, Baek R, Jorgensen MM, Varming K, Stensballe A. Induction of a regulatory phenotype in CD3+ CD4+ HLA-DR+ T cells after allogeneic mixed lymphocyte culture; indications of both contact-dependent and -independent activation. Int J Mol Sci. 2017;18:1603.
Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33:451-458.
Barbaric D et al. Minimally differentiated acute myeloid leukemia (FAB AML-M0) is associated with an adverse outcome in children: a report from the Children's Oncology Group, studies CCG-2891 and CCG-2961. Blood. 2007;109:2314-2321.
Yang H et al. (2013) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic
Contributed Indexing :
Keywords: AML*; CTLA-4*; LAG-3*; T cells*; immune checkpoints*
Substance Nomenclature :
0 (CTLA-4 Antigen)
Entry Date(s) :
Date Created: 20200320 Date Completed: 20210621 Latest Revision: 20210621
Update Code :
Czasopismo naukowe
One of the fundamental hallmarks of cancer is the incapacity of the immune system to eliminate malignancy. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and lymphocyte activation gene-3 (LAG-3) are considered major inhibitory immune checkpoints expressed on T cells. In this study, we investigated mRNA expression of CTLA-4 and LAG-3, as well as their diagnostic and prognostic value in acute myeloid leukemia (AML) patients. The study involved 60 AML patients and 15 controls. Significantly up-regulated CTLA-4 (P = .005) and LAG-3 (P = .02) mRNA expressions were found in AML patients as compared with the healthy control group. AML patients with unfavorable prognosis also showed significant up-regulation of CTLA-4 (P = .006) and LAG-3 (P = .001) mRNA expressions as compared with those with favorable prognosis. Moreover, multiple stepwise linear regression analysis confirmed that patients prognosis was an independent predictor of both CTLA-4 (P = .003) and LAG-3 (P < .001) expression levels. Receiver-operating characteristic (ROC) curve using combined CTLA-4 and LAG-3 expression showed good diagnostic value for AML (area under the curve [AUC] = 0.80, sensitivity = 80%, specificity = 80% for a cut-off probability >.619) as well as moderate predictive value for unfavorable prognosis (AUC = 0.760, sensitivity = 70%, specificity =100% for a cut-off probability >.617). It is clear from this current study that both CTLA-4 and LAG-3 may be promising prognostic markers in AML patients.
(© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies