Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Measurement and modelling of deep sea sediment plumes and implications for deep sea mining.

Tytuł :
Measurement and modelling of deep sea sediment plumes and implications for deep sea mining.
Autorzy :
Spearman J; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK. .
Taylor J; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
Crossouard N; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
Cooper A; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
Turnbull M; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
Manning A; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
Lee M; HR Wallingford, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
Murton B; National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK.
Pokaż więcej
Źródło :
Scientific reports [Sci Rep] 2020 Mar 19; Vol. 10 (1), pp. 5075. Date of Electronic Publication: 2020 Mar 19.
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Original Publication: London : Nature Publishing Group, copyright 2011-
References :
Naden, J. Sustainable use of natural resources, Science and Implementation Plan, Security of Supply of Mineral Resources Research Program 2012–2017. https://www.bgs.ac.uk/sosMinerals/downloads/scienceAndImplementationPlan.pdf Accessed 27/11/2017 (2016).
Hein, J. R. & Koschinsky, A. Deep-ocean ferromanganese crusts and nodules, In: S. Scott (ed.) Treatise on Geochemistry, 2nd edition. Volume 13, 273–291 (2014).
Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulphides: A review of the deposits their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean and Coastal Management 84, 54–67 (2013). (PMID: 10.1016/j.ocecoaman.2013.07.005)
Environmental Impact Statement, Nautilus Minerals Niugini Limited, Solwara 1 Projects. (2008).
Study to investigate the state of knowledge of deep-sea mining. ECORYS Final Report for DG Maritime Affairs and Fisheries, European Commission (2015).
Spearman, J., Lee, M., Matthewson, T. & Newell, R. Insights and future research into the impacts of deep sea mining, Proceedings of the XXI World Dredging Congress (WODCON), 13–17 June 2016, Miami, Florida, USA (2016).
Volkner, S. E. & Lehnen, F. Production key figures for planning the mining of manganese nodules. Marine Georesources and Geotechnology. 36(3), 360–375 (2018). (PMID: 10.1080/1064119X.2017.1319448)
Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One. 12(2), e0171750, https://doi.org/10.1371/journal.pone.0171750 (2017). (PMID: 10.1371/journal.pone.0171750281783465298332)
Burns, R. E., Erickson, B., Lavelle, J. W., Ozturgut, E. Observations and measurements during the monitoring of deep ocean manganese nodule mining test in the North Pacific, April-May 1978, US Department of Commerce, NOAA technical Memorandum, ERL MESA-47, 1980, 63 pp (1980).
Brockett, T. & Richards, C. Z. Deep sea mining simulator for environmental impact studies. Sea Technology 35(8), 77–82 (1994).
Fukushma, T. Overview Japan Deep-sea Impact Experiment (JET), Proceedings of ISOPE Ocean Mining Symposium, November 21-22, 1995, Tsukuba, Japan, p 47–53 (1995).
Tkatchenko, G., Rasziejewska, T., Stoyanova, V., Modlitba, P. A. Benthic Impact Experiment in the IOM Pioneer Area: testing for effects of deep-area disturbance, International Seminar on deep sea-bed mining Tech, China Ocean Mineral Resources R&D Assoc., Beijing, C55–C68 (1996).
Desa, E. INDEX project group, Initial results of India’s environmental impact assessment of nodule mining, Proceedings of International Symposium on Environmental Studies for Deep-Sea Mining, November 20–21, 1997, p 49–63 (1997).
Jankowski, J. A. & Zielke, W. The mesoscale sediment transport due to technical activities in the deep sea, Deep-Sea Research II, 48, 3487–3521 (2001).
Rolinski, S., Segschneider, J. & Sündermann, J. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations, Deep-Sea Research II, 48, 3469–3485.
Thiel, H. & Tiefsee-Umweltschutz, F. Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep-Sea Research II 48, 3433–3452 (2001). (PMID: 10.1016/S0967-0645(01)00051-0)
Aleynik, D., Inall, M. E., Dale, A. & Vink, A. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Scientific Reports 7, 16959 (2017). (PMID: 10.1038/s41598-017-16912-2)
Christiansen, B., Denda, A. & Christiansen, S., Potential effects of deep seabed mining on pelagic and bethopelagic biota, Marine Policy, https://doi.org/10.1016/j.marpol.2019.02.014 .
Spearman, J. A review of the physical impacts of sediment dispersion from aggregate dredging. Marine Pollution Bulletin 94, 260–277 (2015). (PMID: 10.1016/j.marpolbul.2015.01.025)
Sharma, R., Nath, B. N., Parthiban, G. & Sankar, S. J. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Research Part II. 48(16), 3363–3380 (2001). (PMID: 10.1016/S0967-0645(01)00046-7)
Vanreusel, A. et al. Threatened by mining polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808, https://doi.org/10.1038/srep26808. (2016). (PMID: 10.1038/srep26808.272458474887785)
Miller, K. A., Thompson, K. F., Johnston, P. & Santillo, D. An overview of seabed mining including the current state of development, environmental impacts and knowledge gaps. Front. Mar. Sci. 4, 418 (2018). (PMID: 10.3389/fmars.2017.00418)
Gillard, B. et al. Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific), Elem. Sci. Anth. 7, 5. https://doi.org/10.1525/elementa.343 .
Verichev, S. N. et al. Towards zero impact of deep sea offshore projects: An assessment framework for future environmental studies of deep-sea and offshore mining projects, Final Report, Technical University of Delft, 4 April (2014).
Yeo, I. A. et al. Assessment of the mineral resource potential of Atlantic ferromanganese crusts based on their growth history, microstructure and texture. Minerals 8, 327 (2018). (PMID: 10.3390/min8080327)
Manning, A. J., Whitehouse, R. J. S. & Uncles, R. J. Suspended particulate matter: the measurements of flocs. In: Uncles, R. J. and Mitchell, S. (Eds.), ECSA practical handbooks on survey and analysis methods: Estuarine and coastal hydrography and sedimentology, Chapter 8, pp 211–260, Pub. Cambridge University Press, https://doi.org/10.1017/9781139644426 , ISBN 978-1-107-04098-4 (2017).
Cooper, A. J. & Spearman, J. Validation of a TELEMAC-3D model for a seamount, Proceedings of the XXIVth TELEMAC-MASCARET User Conference, 17–20 October 2017, Graz University of Technology Austria (2017).
Goldner, D. R. & Chapman, D. C. Flow and particle motion induced above a tall seamount by steady and tidal background currents. Deep Sea Research Part I: Oceanographic Research Papers 44(5), 719–744 (1997). (PMID: 10.1016/S0967-0637(96)00131-8)
Mohn, C., White, M., Bashmachnikov, I., Jose F. & Pelegri, J. K. Dynamics at an elongated, intermediate depth seamount in the North Atlantic (Sedlo Seamount, 40°20′N, 26°40′W), Deep-Sea Research II Topical Studies in Oceanography 56(25), 2,582–2,592.
Lavelle, J. W. & Mohn C. Motion, commotion and biophysical connections at deep sea seamounts, Oceanography (2010).
van Haren, H., Maas, L. R. M. & Gerkema, T. Patchiness in internal tidal beams. Journal of Marine Research 68, 237–257 (2010). (PMID: 10.1357/002224010793721451)
Gerkema, T., Staquet, C. & Bouret-Aubertot, P. Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophysical Research Letters 33, L08604 (2006).
Manning, A. J. & Dyer, K. R. Mass settling flux of fine sediments in Northern European estuaries: measurements and predictions. Marine Geology 245, 107–122, https://doi.org/10.1016/j.margeo.2007.07.005 (2007). (PMID: 10.1016/j.margeo.2007.07.005)
Manning, A. J. et al. Flocculation dynamics of mud:sand mixed suspensions, In: Sediment Transport Processes and Their Modelling Applications, Andrew J Manning (ed.), InTech. https://doi.org/10.5772/3401 (2013).
Parsons, D. R. et al. The role of biophysical cohesion on subaqueous bed form size, Geophysical Research Letters, 43, https://doi.org/10.1002/2016GL067667 (2016).
Wheatland, J. A. T., Bushby, A. J. & Spencer, K. L. Quantifying the structure and composition of flocculated suspended particulate matter using focused ion beam nanomatography. Environ. Sci. Technol. 51, 8917–8925 (2019). (PMID: 10.1021/acs.est.7b00770)
Zhang, N. et al. Non-destructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X-ray Microcomputed Tomography. Env. Sci. Tech. 52, 13306–13313, https://doi.org/10.1021/acs.est.8b0399 (2018). (PMID: 10.1021/acs.est.8b0399)
Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems, Front. Microbiol, https://doi.org/10.3389/fmicb.2017.00922 (2017).
Sunda W. G. Trace Element Nutrients, In: Steele, J. H., Thorpe, S. A. & Turekian, K. K. (Eds.), Marine Chemistry and Geochemistry, Academic Press, London, pp 17–28 (2010).
Malarkey, J. et al The pervasive role of biological cohesion in bedform development. Nature Communications, https://doi.org/10.1038/ncomms7257 (2015).
Manning, A. J., Baugh, J. V., Spearman, J. R., Pidduck, E. L. & Whitehouse, R. J. S. The settling dynamics of flocculating mud:sand mixtures: Part 1 - Empirical algorithm development. Proceedings of the 10th International Conference on Cohesive Sediment Transport, Rio de Janeiro, Brazil, May 2009, Ocean Dynamics, volume 61, number 2-3, 311–350 (2011).
Spearman, J., Manning, A. J. & Whitehouse, R. W., The settling dynamics of flocculating mud:sand mixtures: Part 2 - Numerical modelling, Proceedings of the 10th International Conference on Cohesive Sediment Transport, Rio de Janeiro, Brazil, May 2009, Ocean Dynamics 61(2–3), 351–370 (2011).
Soulsby, R. L. Dynamics of marine sands, Thomas Telford Publications, London (1997).
Thomsen, L., van Weering, T. & Gust, G. Processes in the benthic boundary layer at the Iberian continental margin and their implication of carbon mineralization. Progress in Oceanography 52, 315–329 (2002). (PMID: 10.1016/S0079-6611(02)00013-7)
BGR, Environmental Impact Assessment for the testing of a pre-prototype manganese nodule collector vehicle in the Eastern German license area (Clarion-Clipperton Zone) in the framework of the European JPI-Oceans Mining Impact II research project (2018).
GSR, Environmental Impact Statement, Small-scale testing of nodule collector components on the seafloor of the Clarion-Clipperton Fracture Zone and its environmental impact (2018).
Bray, R. N. Environmental Aspects of Dredging, Taylor and Francis, London (2009).
Smith, C. R. et al. Preservation reference areas for nodule mining in the Clarion-Clipperton Zone: rationale and recommendations to the International Seabed Authority, Report arising from the workshop: Design Marine Protected Areas for seamounts in the abyssal nodule province in Pacific high seas, October 23-26 2007, University of Hawaii at Manoa (2008).
Ramiro Sanchez, B., et al Characterization and mapping of a deep-sea sponge ground on the Tropic Seamount (Northeast tropical Atlantic): implications for spatial management in the High Seas, Front. Mar. Sci., https://doi.org/10.3389/fmars.2019.00278 (2019).
Ramiro Sanchez, B. et al. Which seamount systems are vulnerable to mining plumes? SOS Minerals Finale Meeting, Royal Society, 9 May 2019.
TELEMAC, http://www.opentelemac.org/ Accessed 18 June 2019 (2019).
Mercator-Ocean, http://www.mercator-ocean.fr/en/ Accessed 26 May 2019 (2017).
Quetin, B. Modèle mathêmatiques de calcul des écoulements induits par le vent, 17ième congrès de l’AIRH, Baden-Baden, 15–19 Aout (1977).
Viollet, P. L. Turbulence models from statistical parameters at one point: K-Epsilon model, EDF Bulletin de la direction des etudes et recherches – Serie A Nucleaire, Hydraulique, Thermique, No. 1, pp 35–47 (1987).
TPXO. http://volkov.oce.orst.edu/tides/global.html Accessed 30 May 2019 (2017).
Mead, C. T. Realisation of the potential of lagrangian models in aquatic dispersion studies, Proceedings of the 3 International Conference on Marine Waste Water Disposal and Marine Environment, Catania, Italy, Paper E18 (2004).
Spearman, J., Bray, R. N. & Burt, T. N. Dynamic representation of trailer dredger source terms in plume dispersion modelling, CEDA Dredging days, November, (2003).
Spearman, J. R. et al. Plume dispersion modelling using dynamic Representation of trailer dredger source terms, Estuarine and Coastal Fine sediment dynamics, INTERCOH 2003, Proceedings in Marine Science: 8, Elsevier, Amsterdam (2007).
Lee, J. H. W. & Cheung, V. Generalized lagrangian model for buoyant jets in current, Journal of Environmental Engineering, volume 116, number 6 (1990).
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. Mixing in Inland and Coastal Waters, Academic Press, San Diego, US (1979).
Nezu, I. & Nakagawa, H. Turulence in open-channel flows, IAHR Monograph Series, Balkema, (1993).
Munk, W. H. & Anderson, E. A. Notes on a theory of the thermocline. J.Marine. Research 3(1), 276–295 (1948).
Yamazaki, T., Cung, J. S. & Tsurusaki, K. Geotechnical parameters and distribution charcateristics of the cobalt-rich manganese crust for the miner design. International Journal of Offshore and Polar Engineering. 5(1), 75–79 (1995).
van’t Hoff, J. & van der Kolff, A. N. Hydraulic Fill Manual, For dredging and reclamation works, CRC Press, London (2012).
Boallti Guzzo, L., Hooiveld, B. J., Castleton, W. E. & Bangash, A. Khalifa Port: A multidisciplinary approach for the beneficial use of dredged materials with high fines content, CEDA Dredging Days, 12 & 13 December 2012, Abu Dhabi, United Arab Emirates (2012).
Dekker, M. A., Kruyt, N. P., den Burger, M. & Vlasblom, W. J. Experimental and Numerical Investigation of Cutter Head Dredging Flows. Journal of Waterway Port Coastal and Ocean Engineering. 129(5), 203–209 (2003). (PMID: 10.1061/(ASCE)0733-950X(2003)129:5(203))
Vlasblom, W. Dredging equipment and technology, Chapter 3: The cutter suction dredger, Lecture notes, Technical University Delft, https://dredging.org/media/ceda/org/documents/resources/othersonline/vlasblom3-the-cutter-suction-dredger.pdf . Accessed 29 May 2019 (2007).
Werkhoven, J. J., Nieuwboer, B. J., Louis, A. A., Ramsdell, R. C. and Miedema, S. A. A pseudo-analytical model CSD spillage due to rotational velocity-induced flow, Proceedings of the Western Dredging Association Dredging Summit & Expo ’18, Norfolk, VA, USA, June 25–28, 2018.
Entry Date(s) :
Date Created: 20200321 Date Completed: 20200826 Latest Revision: 20210319
Update Code :
20210319
PubMed Central ID :
PMC7081334
DOI :
10.1038/s41598-020-61837-y
PMID :
32193479
Czasopismo naukowe
Deep sea mining concerns the extraction of poly-metallic nodules, cobalt-rich crusts and sulphide deposits from the ocean floor. The exploitation of these resources will result in adverse ecological effects arising from the direct removal of the substrate and, potentially, from the formation of sediment plumes that could result in deposition of fine sediment on sensitive species or entrainment of sediment, chemicals and nutrients into over-lying waters. Hence, identifying the behaviour of deep-sea sediment plumes is important in designing mining operations that are ecologically acceptable. Here, we present the results of novel in situ deep sea plume experiments undertaken on the Tropic seamount, 300 nautical miles SSW of the Canary Islands. These plume experiments were accompanied by hydrographic and oceanographic field surveys and supported by detailed numerical modelling and high resolution video settling velocity measurements of the in situ sediment undertaken in the laboratory. The plume experiments involved the controlled formation of benthic sediment plumes and measurement of the plume sediment concentration at a specially designed lander placed at set distances from the plume origin. The experiments were used as the basis for validation of a numerical dispersion model, which was then used to predict the dispersion of plumes generated by full-scale mining. The results highlight that the extent of dispersion of benthic sediment plumes, resulting from mining operations, is significantly reduced by the effects of flocculation, background turbidity and internal tides. These considerations must be taken into account when evaluating the impact and extent of benthic sediment plumes.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies