Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Morphological variations of the human talus investigated using three-dimensional geometric morphometrics.

Tytuł:
Morphological variations of the human talus investigated using three-dimensional geometric morphometrics.
Autorzy:
Nozaki S; Laboratory of Human Evolutionary Biomechanics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Watanabe K; Second Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan.
Kamiya T; Department of Orthopedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, Japan.; Center of Sports Medicine, Hokkaido Obihiro Kyokai Hospital, Obihiro, Hokkaido, Japan.
Katayose M; Second Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan.
Ogihara N; Laboratory of Human Evolutionary Biomechanics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Źródło:
Clinical anatomy (New York, N.Y.) [Clin Anat] 2021 May; Vol. 34 (4), pp. 536-543. Date of Electronic Publication: 2020 Apr 03.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York : Alan R. Liss, Inc., [c1988-
MeSH Terms:
Anatomic Landmarks*
Anatomic Variation*
Imaging, Three-Dimensional*
Talus/*anatomy & histology
Talus/*diagnostic imaging
Adolescent ; Adult ; Age Factors ; Aged ; Aged, 80 and over ; Female ; Humans ; Male ; Middle Aged ; Sex Factors ; Tomography, X-Ray Computed ; Young Adult
References:
Abd-elaleem, S. A., Abd-elhameed, M., & Ewis, A. A. (2012). Talus measurements as a diagnostic tool for sexual dimorphism in Egyptian population. J Forensic Leg Med, 19(2), 70-76.
Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Ital J Zool, 71, 5-16.
Bidmos, M. A., & Dayal, M. R. (2003). Sex determination from the talus of South African whites by discriminant function analysis. Am J Forensic Medi Pathol, 24(4), 322-328.
Bidmos, M. A., & Dayal, M. R. (2004). Further evidence to show population specificity of discriminant function equations for sex determination using the talus of south African blacks. J Forensic Sci, 49(6), 1165-1170.
Cho, N. H., Kim, S., Kwon, D. J., & Kim, H. A. (2009). The prevalence of hallux valgus and its association with foot pain and function in a rural Korean community. J Bone Joint Surg Br, 91(4), 494-498.
Coughlin, M. J., & Jones, C. P. (2007). Hallux valgus: Demographics, etiology, and radiographic assessment. Foot Ankle Int, 28(7), 759-777.
Day, M. H., & Wood, B. A. (1968). Functional affinities of the Olduvai hominid 8 talus. Man, 3(3), 440-455.
DeSilva, J. M. (2009). Functional morphology of the ankle and the likelihood of climbing in early hominins. Proc Natl Acad Sci U S A, 106(16), 6567-6572.
Dufour, A. B., Casey, V. A., Golightly, Y. M., & Hannan, M. T. (2014). Characteristics associated with hallux valgus in a population-based foot study of older adults. Arthritis Care Res, 66(12), 1880-1886.
Ferrari, J., Hopkinson, D. A., & Linney, A. D. (2004). Size and shape differences between male and female foot bones: Is the female foot predisposed to hallux abducto valgus deformity? J Am Podiatr Med Assoc, 94(5), 434-452.
Fukano, M., Fukubayashi, T., & Banks, S. A. (2018). Sex differences in three-dimensional talocrural and subtalar joint kinematics during stance phase in healthy young adults. Hum Mov Sci, 61, 117-125.
Gebo, D. L. (1992). Plantigrady and foot adaptation in African apes: Implications for hominid origins. Am J Phys Anthropol, 89(1), 29-58.
Glasoe, W. M., Jensen, D. D., Kampa, B. B., Karg, L. K., Krych, A. R., Pena, F. A., & Ludewig, P. M. (2014). First ray kinematics in women with rheumatoid arthritis and bunion deformity: A gait simulation imaging study. Arthritis Care Res, 66(6), 837-843.
Goodall, C. (1991). Procrustes methods and the statistical analysis of shape. J R Stat Soc Series B, 53(2), 285-339.
Gower, J. C. (1975). Generalised Procrustes analysis. Psychometrika, 40(1), 33-50.
Gualdi-Russo, E. (2007). Sex determination from the talus and calcaneus measurements. Forensic Sci Int, 171(2-3), 151-156.
Holmes, G. B., Jr., & Mann, R. A. (1992). Possible epidemiological factors associated with rupture of the posterior tibial tendon. Foot Ankle, 13(2), 70-79.
Inamori-Kawamoto, O., Ishikawa, T., Michiue, T., Mustafa, A. M., Sogawa, N., Kanou, T., … Maeda, H. (2016). Possible application of CT morphometry of the calcaneus and talus in forensic anthropological identification. Int J Legal Med, 130(2), 575-585.
Ito, K., Hosoda, K., Shimizu, M., Ikemoto, S., Nagura, T., Seki, H., … Ogihara, N. (2017). Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy. R Soc Open Sci, 4(10), 171086.
Kanamoto, S., Ogihara, N., & Nakatsukasa, M. (2011). Three-dimensional orientations of talar articular surfaces in humans and great apes. Primates, 52(1), 61-68.
Kidd, R. S., Ohiggins, P., & Oxnard, C. E. (1996). The OH8 foot: A reappraisal of the functional morphology of the hindfoot utilizing a multivariate analysis. J Hum Evol, 31(3), 269-291.
Kido, M., Ikoma, K., Imai, K., Maki, M., Takatori, R., Tokunaga, D., … Kubo, T. (2011). Load response of the tarsal bones in patients with flatfoot deformity: in vivo 3D study. Foot Ankle Int, 32(11), 1017-1022.
Kido, M., Ikoma, K., Imai, K., Tokunaga, D., Inoue, N., & Kubo, T. (2013). Load response of the medial longitudinal arch in patients with flatfoot deformity: in vivo 3D study. Clin Biomech, 28(5), 568-573.
Kimura, T., Kubota, M., Taguchi, T., Suzuki, N., Hattori, A., & Marumo, K. (2017). Evaluation of first-ray mobility in patients with hallux valgus using weight-bearing CT and a 3-D analysis system: A comparison with normal feet. J Bone Joint Surg Am, 99(3), 247-255.
Lamy, P. (1986). The settlement of the longitudinal plantar arch of some African Plio-Pleistocene hominids: A morphological study. J Hum Evol, 15(1), 31-46.
Latimer, B., Ohman, J. C., & Lovejoy, C. O. (1987). Talocrural joint in African hominoids: Implications for Australopithecus afarensis. Am J Phys Anthropol, 74(2), 155-175.
Ledesma, R. D., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. Pract Assess Res Eval, 12(2), 2-11.
Ledesma, R. D., Valero-Mora, P., & Macbeth, G. (2015). The scree test and the number of factors: A dynamic graphics approach. Span J Psychol, 18(E11), 1-10.
Lee, Y. C., & Wang, M. J. (2015). Taiwanese adult foot shape classification using 3D scanning data. Ergonomics, 58(3), 513-523.
Levinger, P., Menz, H. B., Morrow, A. D., Bartlett, J. R., Feller, J. A., & Bergman, N. R. (2013). Relationship between foot function and medial knee joint loading in people with medial compartment knee osteoarthritis. J Foot Ankle Res, 6(1), 33.
Lisowski, F. P. (1967). Angular growth changes and comparisons in the primate talus. Folia Primatol, 7(2), 81-97.
Lundgren, P., Nester, C., Liu, A., Arndt, A., Jones, R., Stacoff, A., … Lundberg, A. (2008). Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture, 28(1), 93-100.
Mahakkanukrauh, P., Praneatpolgrang, S., Ruengdit, S., Singsuwan, P., Duangto, P., & Case, D. T. (2014). Sex estimation from the talus in a Thai population. Forensic Sci Int, 240, 152.e151-152.e158.
Manter, J. T. (1946). Distribution of compression forces in the joints of the human foot. Anat Rec, 96(3), 313-321.
McCulloch, M. U., Brunt, D., & Vander Linden, D. (1993). The effect of foot orthotics and gait velocity on lower limb kinematics and temporal events of stance. J Orthop Sports Phys Ther, 17(1), 2-10.
Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evol Biol, 36, 235-247.
Moore, E. S., Kindig, M. W., McKearney, D. A., Telfer, S., Sangeorzan, B. J., & Ledoux, W. R. (2019). Hind- and midfoot bone morphology varies with foot type and sex. J Orthop Res, 73(3), 744-759.
Murphy, A. M. (2002). The talus: Sex assessment of prehistoric New Zealand Polynesian skeletal remains. Forensic Sci Int, 128(3), 155-158.
Murphy, A. M. (2005). The articular surfaces of the hindfoot: Sex assessment of prehistoric New Zealand Polynesian skeletal remains. Forensic Sci Int, 151(1), 19-22.
Navega, D., Vicente, R., Vieira, D. N., Ross, A. H., & Cunha, E. (2015). Sex estimation from the tarsal bones in a Portuguese sample: A machine learning approach. Int J Legal Med, 129(3), 651-659.
Nix, S., Smith, M., & Vicenzino, B. (2010). Prevalence of hallux valgus in the general population: A systematic review and meta-analysis. J Foot Ankle Res, 3, 21.
Norton, A. A., Callaghan, J. J., Amendola, A., Phisitkul, P., Wongsak, S., Liu, S. S., & Fruehling-Wall, C. (2015). Correlation of knee and hindfoot deformities in advanced knee OA: Compensatory hindfoot alignment and where it occurs. Clin Orthop Relat Res, 473(1), 166-174.
Nozaki, S., Watanabe, K., Kamiya, T., Katayose, M., & Ogihara, N. (2019). Three-dimensional morphological variations of the human calcaneus investigated using geometric morphometrics. Clin Anat. https://doi.org/10.1002/ca.23501.
O'Higgins, P. (2000). The study of morphological variation in the hominid fossil record: Biology, landmarks and geometry. J Anat, 197(Pt 1), 103-120.
O'Higgins, P., & Jones, N. (2006). Tools for statistical shape analysis. Heslington, England: Hull York Medical School. http://hyms.fme.googlepages.com/resources.
Phan, C. B., Shin, G., Lee, K. M., & Koo, S. (2019). Skeletal kinematics of the midtarsal joint during walking: Midtarsal joint locking revisited. J Biomech, 95, 109287.
Prang, T. C. (2016). The subtalar joint complex of Australopithecus sediba. J Hum Evol, 90, 105-119.
Prieto-Alhambra, D., Judge, A., Javaid, M. K., Cooper, C., Diez-Perez, A., & Arden, N. K. (2014). Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: Influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis, 73(9), 1659-1664.
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool, 39(1), 40-59.
Sasaki, E., Ota, S., Chiba, D., Kimura, Y., Sasaki, S., Yamamoto, Y., … Ishibashi, Y. (2019). Early knee osteoarthritis prevalence is highest among middle-aged adult females with obesity based on new set of diagnostic criteria from a large sample cohort study in the Japanese general population. Knee Surg Sports Traumatol Arthrosc, 28(3), 984-994.
Shih, Y. F., Chen, C. Y., Chen, W. Y., & Lin, H. C. (2012). Lower extremity kinematics in children with and without flexible flatfoot: A comparative study. BMC Musculoskelet Disord, 13, 31.
Slice, D. E. (2005). Modern morphometrics in physical anthropology (pp. 1-45). New York: Kluwer Academic/Plenum.
Song, J., Choe, K., Neary, M., Zifchock, R. A., Cameron, K. L., Trepa, M., … Hillstrom, H. (2018). Comprehensive biomechanical characterization of feet in USMA cadets: Comparison across race, gender, arch flexibility, and foot types. Gait Posture, 60, 175-180.
Stankovic, K., Booth, B. G., Danckaers, F., Burg, F., Vermaelen, P., Duerinck, S., … Huysmans, T. (2018). Three-dimensional quantitative analysis of healthy foot shape: A proof of concept study. J Foot Ankle Res, 11, 8.
Tumer, N., Arbabi, V., Gielis, W. P., de Jong, P. A., Weinans, H., Tuijthof, G. J. M., & Zadpoor, A. A. (2019). Three-dimensional analysis of shape variations and symmetry of the fibula, tibia, calcaneus and talus. J Anat, 234(1), 132-144.
Wilken, J., Rao, S., Saltzman, C., & Yack, H. J. (2011). The effect of arch height on kinematic coupling during walking. Clin Biomech, 26(3), 318-323.
Zifchock, R. A., Davis, I., Hillstrom, H., & Song, J. (2006). The effect of gender, age, and lateral dominance on arch height and arch stiffness. Foot Ankle Int, 27(5), 367-372.
Contributed Indexing:
Keywords: age; foot; sex; shape; subtalar; talocrural; talonavicular
Entry Date(s):
Date Created: 20200321 Date Completed: 20211019 Latest Revision: 20211019
Update Code:
20240105
DOI:
10.1002/ca.23588
PMID:
32196726
Czasopismo naukowe
Introduction: The shape of the talus determines the positional and kinematic features of the subtalar, talonavicular, and talocrural joints during walking. Thus, detailed knowledge of the pattern of sexual dimorphism of the human talus may be useful for revealing the pathogenetic mechanism of foot and knee disorders, which are more prevalent in females. The aim of this study was to characterize and visualize the three-dimensional shape variations of the talus in relation to sex and age using geometric morphometrics.
Materials and Methods: Computed tomography images of 56 feet without talar injuries or disorders were used in this study. Thirty-seven anatomical landmarks were identified on a bone model of the talus to calculate principal components (PCs) of shape variations among specimens. PC scores were compared between sexes, and their correlations with age were also investigated.
Results: The female talus had a longer neck and narrower head width than the male talus. The superior trochlea was tilted more laterally in the frontal plane in females. Furthermore, the female talar head was more twisted and was more elongated in the dorsoplantar direction.
Conclusions: Morphological features of the talus in females could alter the subtalar and talonavicular joint kinematics during walking and could be a structural factor in the pathogenetic mechanism underlying foot and knee disorders. This study contributes to the comprehensive understanding of shape variations in the human talus.
(© 2020 Wiley Periodicals, Inc.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies