Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Non-targeted urinary metabolomics in pregnancy and associations with fetal growth restriction.

Tytuł:
Non-targeted urinary metabolomics in pregnancy and associations with fetal growth restriction.
Autorzy:
Clinton CM; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
Bain JR; Metabolomics Laboratory, Duke Molecular Physiology Institute, and Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
Muehlbauer MJ; Duke Molecular Physiology Institute, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.
Li Y; Biostatistics and Computational Biology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, Research, Triangle Park, NC, USA.
Li L; Biostatistics and Computational Biology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, Research, Triangle Park, NC, USA.
O'Neal SK; Duke Molecular Physiology Institute, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.
Hughes BL; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
Cantonwine DE; Division of Maternal-Fetal Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Mcelrath TF; Division of Maternal-Fetal Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Ferguson KK; Epidemiology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, Research, Triangle Park, NC, USA. .
Źródło:
Scientific reports [Sci Rep] 2020 Mar 24; Vol. 10 (1), pp. 5307. Date of Electronic Publication: 2020 Mar 24.
Typ publikacji:
Journal Article; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Metabolome*
Biomarkers/*urine
Fetal Growth Retardation/*diagnosis
Infant, Small for Gestational Age/*metabolism
Adult ; Birth Weight ; Case-Control Studies ; Female ; Fetal Growth Retardation/urine ; Gestational Age ; Humans ; Infant, Newborn ; Maternal Age ; Pregnancy
References:
Resnik, R. Intrauterine growth restriction. Obstet. Gynecol. 99, 490–496 (2002). (PMID: 1186467911864679)
Barker, D. J. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 49, 270–283 (2006). (PMID: 10.1097/00003081-200606000-00009)
American College of Obstetricians and Gynecologists. Practice Bulletin No. 134: Fetal growth restriction. Obstet. Gynecol. 121, 1122–1133 (2013). (PMID: 10.1097/01.AOG.0000429658.85846.f9)
Nobakht, M. Gh. Bf. Application of metabolomics to preeclampsia diagnosis. Syst. Biol Reprod. Med. 64, 324–339 (2018). (PMID: 10.1080/19396368.2018.1482968)
Chen, Q., Francis, E., Hu, G. & Chen, L. Metabolomic profiling of women with gestational diabetes mellitus and their offspring: Review of metabolomics studies. J. Diabetes Complications 32, 512–523 (2018). (PMID: 10.1016/j.jdiacomp.2018.01.007)
Luthra, G. et al. First and second trimester urinary metabolic profiles and fetal growth restriction: an exploratory nested case-control study within the infant development and environment study. BMC pregnancy and childbirth 18, 48 (2018). (PMID: 10.1186/s12884-018-1674-8)
Maitre, L. et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC medicine 12, 110 (2014). (PMID: 10.1186/1741-7015-12-110)
Maitre, L. et al. Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study. BMC medicine 14, 177 (2016). (PMID: 10.1186/s12916-016-0706-3)
Breslau, N., Paneth, N., Lucia, V. C. & Paneth-Pollak, R. Maternal smoking during pregnancy and offspring IQ. Int. J. Epidemiology 34, 1047–1053 (2005). (PMID: 10.1093/ije/dyi163)
Pan, Z. & Raftery, D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem. 387, 525–527 (2007). (PMID: 10.1007/s00216-006-0687-8)
Lager, S. & Powell, T. L. Regulation of nutrient transport across the placenta. J Pregnancy 2012, 179827 (2012). (PMID: 10.1155/2012/179827)
Fowden, A. L., Ward, J. W., Wooding, F. P., Forhead, A. J. & Constancia, M. Programming placental nutrient transport capacity. J. Physiol. 572, 5–15 (2006). (PMID: 10.1113/jphysiol.2005.104141)
Zhang, S. et al. Placental adaptations in growth restriction. Nutrients 7, 360–389 (2015). (PMID: 10.3390/nu7010360)
Sanz-Cortes, M. et al. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation. PLoS One 8, e80121 (2013). (PMID: 10.1371/journal.pone.0080121)
Miranda, J. et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci. Rep. 8, 13614 (2018). (PMID: 10.1038/s41598-018-31832-5)
Penczynski, K. J. et al. Relative validation of 24-h urinary hippuric acid excretion as a biomarker for dietary flavonoid intake from fruit and vegetables in healthy adolescents. Eur. J. Nutr. 56, 757–766 (2017). (PMID: 10.1007/s00394-015-1121-9)
Zhao, Y. Y. Metabolomics in chronic kidney disease. Clin. Chim. Acta 422, 59–69 (2013). (PMID: 10.1016/j.cca.2013.03.033)
Niwa, T. Update of uremic toxin research by mass spectrometry. Mass. Spectrom. Rev. 30, 510–521 (2011). (PMID: 10.1002/mas.20323)
Toyohara, T. et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens. Res. 33, 944–952 (2010). (PMID: 10.1038/hr.2010.113)
Everson, G. T. Gastrointestinal motility in pregnancy. Gastroenterol. Clin. North. Am. 21, 751–776 (1992). (PMID: 14787331478733)
Committee opinion no 611: method for estimating due date. Obstet. Gynecol. 124, 863–866 (2014).
Oken, E., Kleinman, K. P., Rich-Edwards, J. & Gillman, M. W. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC pediatrics 3, 6 (2003). (PMID: 10.1186/1471-2431-3-6)
McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106 (2011). (PMID: 10.1126/scitranslmed.3002701)
Halket, J. M. et al. Deconvolution gas chromatography/mass spectrometry of urinary organic acids–potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spec. 13, 279–284 (1999). (PMID: 10.1002/(SICI)1097-0231(19990228)13:4<279::AID-RCM478>3.0.CO;2-I)
Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009). (PMID: 10.1021/ac9019522)
Kopka, J. et al. : the Golm Metabolome Database. Bioinformatics 21, 1635–1638 (2005). (PMID: 10.1093/bioinformatics/bti236)
Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and Regression Trees. CRC Press, Boca Raton, FL (1984).
Matlab R. Statistics and Machine Learning Toolbox, classification trees (fitctree). (2018).
Substance Nomenclature:
0 (Biomarkers)
Entry Date(s):
Date Created: 20200327 Date Completed: 20201123 Latest Revision: 20210324
Update Code:
20240105
PubMed Central ID:
PMC7093500
DOI:
10.1038/s41598-020-62131-7
PMID:
32210262
Czasopismo naukowe
Our objective was to identify metabolites associated with fetal growth restriction (FGR) by examining early and late pregnancy differences in non-targeted urinary metabolites among FGR cases and non-FGR controls. An exploratory case-control study within LIFECODES birth cohort was performed. FGR cases (N = 30), defined as birthweight below the 10 th percentile, were matched with controls (N = 30) based on maternal age, race, pre-pregnancy body mass index, and gestational age at delivery. Gas chromatography/electron-ionization mass spectrometry was performed on urine samples collected at 10 and 26 weeks of gestation. Differences in urinary metabolite levels in cases and controls at each time point and between the two time points were calculated and then changes compared across pregnancy. 137 unique urinary metabolites were annotated, and several identified that were higher in cases compared to controls. For example, urinary concentrations of benzoic acid were higher in cases compared to controls at both study visits (3.01-fold higher in cases at visit 1, p < 0.01; 3.10-fold higher in cases at visit 3, p = 0.05). However, these findings from our exploratory analysis were not robust to false-discovery-rate adjustment. In conclusion, using a high-resolution, non-targeted approach, we found specific urinary organic acids differed over pregnancy by FGR case status.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies