Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of JAK2/STAT3 pathways.

Tytuł:
S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of JAK2/STAT3 pathways.
Autorzy:
Liu Y; Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
Bi T; Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
Yuan F; Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
Gao X; Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
Jia G; Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China. .
Tian Z; Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China. .
Źródło:
Naunyn-Schmiedeberg's archives of pharmacology [Naunyn Schmiedebergs Arch Pharmacol] 2020 Dec; Vol. 393 (12), pp. 2507-2515. Date of Electronic Publication: 2020 Mar 26.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer Verlag.
MeSH Terms:
Apoptosis/*drug effects
Cell Cycle Checkpoints/*drug effects
Gallbladder Neoplasms/*drug therapy
Janus Kinase 2/*antagonists & inhibitors
S-Adenosylmethionine/*pharmacology
STAT3 Transcription Factor/*antagonists & inhibitors
Animals ; Antineoplastic Agents/pharmacology ; Antineoplastic Agents/therapeutic use ; Apoptosis/physiology ; Cell Cycle Checkpoints/physiology ; Cell Line, Tumor ; Dose-Response Relationship, Drug ; Gallbladder Neoplasms/metabolism ; Humans ; Janus Kinase 2/metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; S-Adenosylmethionine/therapeutic use ; STAT3 Transcription Factor/metabolism ; Signal Transduction/drug effects ; Signal Transduction/physiology ; Xenograft Model Antitumor Assays/methods
References:
Abraha AM, Ketema EB (2016) Apoptotic pathways as a therapeutic target for colorectal cancer treatment. World J Gastrointest Oncol 8(8):583–591. (PMID: 27574550498064810.4251/wjgo.v8.i8.583)
Åndrén-Sandberg A, Deng Y (2014) Aspects on gallbladder cancer in 2014. Curr Opin Gastroenterol 30(3):326–321. (PMID: 2468643410.1097/MOG.0000000000000068)
Bizama C, García P, Espinoza JA, Weber H, Leal P, Nervi B, Roa JC (2015) Targeting specific molecular pathways holds promise for advanced gallbladder cancer therapy. Cancer Treat Rev 41(3):222–234. (PMID: 2563963210.1016/j.ctrv.2015.01.003)
Bottiglieri T (2002) S-Adenosyl-L-methionine (SAMe): from the bench to the bedside-molecular basis of a pleiotrophic molecule. Am J Clin Nutr 76(5):1151S–1157S. (PMID: 1241849310.1093/ajcn/76.5.1151S)
Boutros C, Gary M, Baldwin K, Somasundar P (2012) Gallbladder cancer: past, present and an uncertain future. Surg Oncol 21(4):e183–e191. (PMID: 2302591010.1016/j.suronc.2012.08.002)
Huang Y, Zhang J, Wang G, Chen X, Zhang R, Liu H et al (2018) Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol 32:2058738418781634. (PMID: 30103640609667310.1177/2058738418781634)
Ilisso CP, Sapio L, Delle Cave D, Illiano M, Spina A, Cacciapuoti G, Naviglio S, Porcelli M (2016) S-adenosylmethionine affects ERK1/2 and Stat3 pathways and induces apotosis in osteosarcoma cells. J Cell Physiol 231(2):428–435. (PMID: 2617410610.1002/jcp.25089)
Jia JG, Li SG, Gong W, Ding J, Fang CF, Quan ZW (2011) mda7/IL-24 induces apoptosis in human GBC-SD gallbladder carcinoma cells via mitochondrial apoptotic pathway. Oncol Rep 25(1):195–201. (PMID: 21109977)
Kasibhatla S, Tseng B (2003) Why target apoptosis in cancer treatment? Mol Cancer Ther 2(6):573–580. (PMID: 12813137)
Kastan MB, Bartek J (2004) Cell cycle checkpoints and cancer. Nature 432(7015):316–323. (PMID: 1554909310.1038/nature03097)
Kasumova GG, Tabatabaie O, Najarian RM, Callery MP, Ng SC, Bullock AJ, Fisher RA, Tseng JF (2017) Surgical management of gallbladder cancer: simple versus extended cholecystectomy and the role of adjuvant therapy. Ann Surg 266(4):625–631. (PMID: 2869246910.1097/SLA.0000000000002385)
Komar HM, Serpa G, Kerscher C, Schwoegl E, Mace TA, Jin M, Yang MC, Chen CS, Bloomston M, Ostrowski MC, Hart PA, Conwell DL, Lesinski GB (2017) Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo. Sci Rep 7(1):1787. (PMID: 28496202543193010.1038/s41598-017-01973-0)
Lai CH, Lau WY (2008) Gallbladder cancer a comprehensive review. Surgeon 6(2):101–110. (PMID: 1848877610.1016/S1479-666X(08)80073-X)
Li TW, Zhang Q, Oh P, Xia M, Chen H, Bemanian S, Lastra N, Circ M, Moyer MP, Mato JM, Aw TY, Lu SC (2009) S-Adenosylmethionine and methylthioadenosine inhibit cellular FLICE inhibitory protein expression and induce apoptosis in colon cancer cells. Mol Pharmacol 76(1):192–200. (PMID: 19372210270146310.1124/mol.108.054411)
Li Y, Pan J, Gou M (2019) The anti proliferation, cycle arrest and apoptotic inducing activity of peperomin E on prostate cancer PC-3 cell line. Molecules 24(8):1472. (PMID: 651459210.3390/molecules24081472)
Liu J, Yao Y, Ding H, Chen R (2014) Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells. Tumor Biol 35(6):5409–5415. (PMID: 10.1007/s13277-014-1705-7)
Liu Y, Bi T, Wang G, Dai W, Wu G, Qian L, Gao Q, Shen G (2015) Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedeberg's Arch Pharmacol 388(3):295–304. (PMID: 10.1007/s00210-014-1071-4)
Liu Y, Bi T, Shen G, Li Z, Wu G, Wang Z, Qian L, Gao Q (2016) Lupeol induces apoptosis and inhibits invasion in gallbladder carcinoma GBC-SD cells by suppression of EGFR/MMP-9 signaling pathway. Cytotechnology 68(1):123–133. (PMID: 2503772810.1007/s10616-014-9763-7)
Liu Y, Bi T, Dai W, Wang G, Qian L, Shen G, Gao Q (2016a) Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells. Naunyn Schmiedeberg's Arch Pharmacol 389(5):477–484. (PMID: 10.1007/s00210-016-1221-y)
Liu Y, Bi T, Liu L, Gao Q, Shen G, Qin L (2019) S-Adenosylmethionine synergistically enhances the antitumor effect of gemcitabine against pancreatic cancer through JAK2/STAT3 pathway. Naunyn Schmiedeberg's Arch Pharmacol 392(5):615–622. (PMID: 10.1007/s00210-019-01617-2)
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P, Gong W (2019a) BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci 110(8):2493–2506. (PMID: 31215139667626710.1111/cas.14102)
Lokau J, Schoeder V, Haybaeck J, Garbers C (2019) Jak-Stat signaling induced by interleukin-6 family cytokines in hepatocellular carcinoma. Cancers (Basel) 11(11):1704.
Lu SC, Mato JM (2008) S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 23(Suppl 1):S73–S77. (PMID: 18336669240869110.1111/j.1440-1746.2007.05289.x)
Ma D, Shen B, Seewoo V, Tong H, Yang W, Cheng X, Jin Z, Peng C, Qiu W (2016) GADD45β induction by S-adenosylmethionine inhibits hepatocellular carcinoma cell proliferation during acute ischemia-hypoxia. Oncotarget 7(24):37215–37225. (PMID: 27177086509507010.18632/oncotarget.9295)
Mahmood N, Cheishvili D, Arakelian A, Tanvir I, Khan HA, Pépin AS, Szyf M, Rabbani SA (2017) Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget 9(4):5169–5183. (PMID: 29435170579704110.18632/oncotarget.23704)
O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. (PMID: 25587654563433610.1146/annurev-med-051113-024537)
Ouyang J, Pan X, Lin H, Hu Z, Xiao P, Hu H (2017) GKN2 increases apoptosis, reduces the proliferation and invasion ability of gastric cancer cells through down-regulating the JAK/STAT signaling pathway. Am J Transl Res 9(2):803–811. (PMID: 283373095340716)
Parashar S, Cheishvili D, Arakelian A, Hussain Z, Tanvir I, Khan HA, Szyf M, Rabbani SA (2015) S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications. Cancer Med 4(5):732–744. (PMID: 25619880443026610.1002/cam4.386)
Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. Cancer J Clin 68(1):7–30. (PMID: 10.3322/caac.21442)
Taner CB, Nagorney DM, Donohue JH (2004) Surgical treatment of gallbladder cancer. J Gastrointest Surg 8(1):83–89 (discussion 89). (PMID: 1474683910.1016/j.gassur.2003.09.022)
Toh TB, Lim JJ, Hooi L, Rashid MBMA, Chow EK (2020) Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol 72(1):104–118. (PMID: 3154168110.1016/j.jhep.2019.08.035)
Villarino AV, Kanno Y, O'Shea JJ (2017) Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 18(4):374–384. (PMID: 2832326010.1038/ni.3691)
Wang L, Wu J, Lu J, Ma R, Sun D, Tang J (2015) Regulation of the cell cycle and PI3K/Akt/mTor signaling pathway by tanshinone I in human breast cancer cell lines. Mol Med Rep 11(2):931–939. (PMID: 2535505310.3892/mmr.2014.2819)
Yan L, Liang X, Huang H, Zhang G, Liu T, Zhang J, Chen Z, Zhang Z, Chen Y (2019) S-adenosylmethionine affects cell cycle pathways and suppresses proliferation in liver cells. J Cancer 10(18):4368–4379. (PMID: 31413757669169310.7150/jca.25422)
Yang L, Wei WC, Meng XN, Gao J, Guo N, Wu FT, Zeng WW (2019) Significance of IL28RA in diagnosis of early pancreatic cancer and its regulation to pancreatic cancer cells by JAK/STAT signaling pathway effects of IL28RA on pancreatic cancer. Eur Rev Med Pharmacol Sci 23(22):9863–9870. (PMID: 31799654)
Contributed Indexing:
Keywords: Apoptosis; Cell cycle; Gallbladder carcinoma; JAK2/STAT3; S-adenosylmethionine
Substance Nomenclature:
0 (Antineoplastic Agents)
0 (STAT3 Transcription Factor)
0 (Stat3 protein, mouse)
7LP2MPO46S (S-Adenosylmethionine)
EC 2.7.10.2 (Jak2 protein, mouse)
EC 2.7.10.2 (Janus Kinase 2)
Entry Date(s):
Date Created: 20200329 Date Completed: 20210924 Latest Revision: 20230928
Update Code:
20240105
DOI:
10.1007/s00210-020-01858-6
PMID:
32219484
Czasopismo naukowe
S-adenosylmethionine (SAM) is a naturally occurring physiologic molecule found ubiquitously in all mammalian cells and an essential compound in many metabolic pathways. It has been reported to possess many pharmacological properties including cancer-preventive and anticancer effects. However, the precise molecular mechanism involved in its anticancer effect is not yet clear. The present study is conducted to investigate the anticancer activity and the underlying mechanisms of SAM on human gallbladder cancer cells (GBC-SD and SGC-996) in vitro and in vivo. Cells were dealt with SAM and subjected to cell viability, colony formation, Hoechst staining, apoptosis, cycle arrest, western blot, and xenograft tumorigenicity assay. Experimental results showed that SAM could significantly inhibit the growth and proliferation and induce the apoptosis as well as cell cycle arrest in G0/G1 phase of GBC-SD and SGC-996 cells in a dose-dependent manner in vitro. The expression levels of p-JAK2, p-STAT3, Mcl-1, and Bcl-XL were significantly downregulated. In addition, inhibition of the JAK2/STAT3 pathway significantly enhanced the anti-apoptotic effect of SAM, suggesting the key roles of JAK2/STAT3 in the process. More importantly, our in vivo studies demonstrated that administration of SAM could significantly decrease the tumor weight and volume and immunohistochemistry analysis proved the downregulation of p-JAK2 and p-STAT3 in tumor tissues following SAM treatment, consistent with our in vitro results. In summary, our findings indicated that SAM can inhibit cell proliferation and induce apoptosis as well as cycle arrest of GBC cells by suppression of JAK2/STAT3 pathways and the dramatic effects of SAM hinting that SAM might be a useful therapeutic option for patients suffering from gallbladder cancer.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies