Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

De-ubiquitinases on the move: an emerging field in plant biology.

Tytuł:
De-ubiquitinases on the move: an emerging field in plant biology.
Autorzy:
Majumdar P; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
Nath U; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
Źródło:
Plant biology (Stuttgart, Germany) [Plant Biol (Stuttg)] 2020 Jul; Vol. 22 (4), pp. 563-572. Date of Electronic Publication: 2020 Apr 30.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: Oxford, England : Wiley
Original Publication: Stuttgart : New York, NY : G. Thieme Verlag ; Thieme New York, c1999-
MeSH Terms:
Botany*/trends
Endopeptidases*/metabolism
Plants*/enzymology
Ubiquitin*/metabolism
Arabidopsis/enzymology ; Protein Processing, Post-Translational ; Ubiquitination
References:
Amerik A.Y., Swaminathan S., Krantz B.A., Wilkinson K.D., Hochstrasser M. (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO Journal, 16, 4826-4838.
An Z., Liu Y., Ou Y., Li J., Zhang B., Sun D., Sun Y., Tang W. (2018) Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proceedings of the National Academy of Sciences of the United States of America, 115, 1123-1128.
Arimura S.-I., Fujimoto M., Doniwa Y., Kadoya N., Nakazono M., Sakamoto W., Tsutsumi N. (2008) Arabidopsis ELONGATED MITOCHONDRIA1 is required for localization of DYNAMIN-RELATED PROTEIN3A to mitochondrial fission sites. The Plant Cell, 20, 1555-1566.
Balch W.E., Morimoto R.I., Dillin A., Kelly J.W. (2008) Adapting proteostasis for disease intervention. Science, 319, 916-919.
Blilou I., Frugier F., Folmer S., Serralbo O., Willemsen V., Wolkenfelt H., Eloy N.B., Ferreira P.C.G., Weisbeek P., Schere B. (2002) The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes and Development, 16, 2566-2575.
Block-Schmidt A.S., Dukowic-Schulze S., Wanieck K., Reidt W., Puchta H. (2011) BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana. Nucleic Acids Research, 39, 146-154.
Bonnet J., Romier C., Tora L., Devys D. (2008) Zinc-finger UBPs: regulators of deubiquitylation. Trends in Biochemical Sciences, 33, 369-375.
Book A.J., Gladman N.P., Lee S.-S., Scalf M., Smith L.M., Vierstra R.D. (2010) Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. Journal of Biological Chemistry, 285, 25554-25569.
Callis J. (2014) The ubiquitination machinery of the ubiquitin system. The Arabidopsis book, 12, e0174.
Callis J., Carpenter T., Sun C., Vierstrat R.D. (1995) Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype columbia. Genetics, 139, 921-939.
Chandler J.S., McArdle B., Callis J. (1997) AtUBP3 and AtUBP4 are two closely related Arabidopsis thaliana ubiquitin-specific proteases present in the nucleus. Molecular and General Genetics, 255, 302-310.
Cui X., Lu F., Li Y., Xue Y., Kang Y., Zhang S., Qui Q., Cui X., Zheng S., Liu B., Xu X., Cao X. (2013) Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiology, 162, 897-906.
Dayal S., Sparks A., Jacob J., Allende-Vega N., Lane D.P., Saville M.K. (2009) Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. Journal of Biological Chemistry, 284, 5030-5041.
Derkacheva M., Hennig L. (2014) Variations on a theme: polycomb group proteins in plants. Journal of Experimental Botany, 65, 2769-2784.
Derkacheva M., Liu S., Figueiredo D.D., Gentry M., Mozgova I., Nanni P., Tang M., Mannervik M., Kohler C., Henning L. (2016) H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. Nature Plants, 2, 1-10.
Dharmasiri N., Estelle M. (2004) Auxin signaling and regulated protein degradation. Trends in Plant Science, 9, 302-308.
Doelling J.H., Phillips A.R., Soyler-Ogretim G., Wise J., Chandler J., Callis J., Otegui M.S., Vierstra R.D. (2007) The Ubiquitin-specific protease subfamily UBP3/UBP4 is essential for pollen development and transmission in Arabidopsis. Plant Physiology, 145, 801-813.
Doelling J.H., Yan N., Kurepa J., Walker J., Vierstra R.D. (2001) The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana. The Plant Journal, 27, 393-405.
Du L., Li N., Chen L., Xu Y., Li Y., Zhang Y., Li C., Li Y. (2014) The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. The Plant Cell, 26, 665-677.
Eletr Z.M., Wilkinson K.D. (2014) Regulation of proteolysis by human deubiquitinating enzymes. Biochimica et Biophysica Acta, 1843, 1-37.
Ewan R., Pangestuti R., Thornber S., Craig A., Carr C., O'Donnell L., Zhang C., Sadanandom A. (2011) Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity. New Phytologists, 191, 92-106.
George A.J., Hoffiz Y.C., Charles A.J., Zhu Y., Mabb A.M. (2018) A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Frontiers in Genetics, 9, 1-17.
Guilfoyle T.J., Hagen G. (2007) Auxin response factors. Current Opinion in Plant Bioloy, 10, 453-460.
Hauser F., Waadt R., Schroeder J.I. (2011) Evolution of abscisic acid synthesis and signaling mechanism. Current Biology, 21, 346-355.
Heessen S., Masucci M.G., Dantuma N.P. (2005) The UBA2 domain functions as an intrinsic stabilization signal that protects rad23 from proteasomal degradation. Molecular Cell, 18, 225-235.
Hershko A., Ciechanover A. (1992) The ubiquitin system for protein degradation. Annual Review of Biochemistry, 61, 761-807.
Hershko A., Ciechanover A. (1998) The ubiquitin system. Annual Review of Biochemistry, 67, 425-479.
Isono E., Nagel M.-K. (2014) Deubiquitylating enzymes and their emerging role in plant biology. Frontiers in Plant Science, 5, 1-6.
Isono E., Katsiarimpa A., Müller I.K., Anzenberger F., Stierhof Y.-D., Geldner N., Chory J., Schwechheimer C. (2010) The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. The Plant Cell, 22, 1826-1837.
Jeong J.S., Jung C., Seo J.S., Kim J.-K., Chua N.-H. (2017) The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in Jasmonate responses. The Plant Cell, 29, 1406-1424.
Jin D., Li B., Deng X.W., Wei N. (2014) Plant COP9 Signalosome subunit 5, CSN5. Plant Science, 224, 54-61.
Johnston S.C., Larsen C.N., Cook W.J., Wilkinson K.D., Hill C.P. (1997) Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 Å resolution. EMBO Journal, 16, 3787-3796.
Karidas P. (2014) Map-based cloning and characterization of TARANI, a global regulator of Arabidopsis development. PhD thesis, Indian Institute of Science, India.
Karidas P., Challa K.R., Nath U. (2015) The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division. Journal of Experimental Botany, 66, 2107-2122.
Kimura Y., Tanaka K. (2010) Regulatory mechanisms involved in the control of ubiquitin homeostasis. Journal of Biochemistry, 147, 793-798.
Kinner A., Kölling R. (2003) The yeast deubiquitinating enzyme Ubp16 is anchored to the outer mitochondrial membrane. FEBS Letters, 549, 135-140.
Komander D., Clague M.J., Urbé S. (2009) Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 10, 550-563.
Krichevsky A., Zaltsman A., Lacroix B., Citovsky V. (2011) Involvement of KDM1C histone demethylase-OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proceedings of the National Academy of Sciences of the United States of America, 108, 11157-11162.
Larsen C.N., Krantz B.A., Wilkinson K.D. (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal. Biochemistry, 37, 3358-3368.
Li W., Perry P.J., Prafulla N.N., Schmidt W. (2010) Ubiquitin-Specific Protease 14 (UBP14) is involved in root responses to phosphate deficiency in Arabidopsis. Molecular Plant, 3, 212-223.
Liu Y., Wang F., Zhang H., He H., Ma M., Deng X.W. (2008) Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. The Plant Journal, 55, 844-856.
Luo M., Luo M.-Z., Buzas D., Finnegan J., Helliwell C., Dennis E.S., Peacock W.J., Chaudhury A. (2008) UBIQUITIN-SPECIFIC PROTEASE 26 is required for seed development and the repression of PHERES1 in Arabidopsis. Genetics, 180, 229-236.
March E., Farrona S. (2018) Plant deubiquitinases and their role in the control of gene expression through modification of histones. Frontiers in Plant Science, 8, 1-14.
Mazzucotelli E., Belloni S., Marone D., De Leonardis A.M., Guerra D., Di Fonzo N., Cattivelli L., Mastrangelo A.M. (2006) The E3 ubiquitin ligase gene family in plants: regulation by degradation. Current Genomics, 7, 509-522.
Menges M., de Jager S.M., Gruissem W., Murray J.A.H. (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. The Plant Journal, 41, 546-566.
Mevissen T.E.T., Komander D. (2017) Mechanisms of deubiquitinase specificity and regulation. Annual Review of Biochemistry, 86, 159-192.
Moon B.C., Choi M.S., Kang Y.H., Kim M.C., Cheong M.S., Park C.Y., Yoo J.H., Koo S.C., Lee S.M., Lim C.O., Cho M.J., Chung W.S. (2005) Arabidopsis ubiquitin-specific protease 6 (AtUBP6) interacts with calmodulin. FEBS Letters, 579, 3885-3890.
Moon J., Parry G., Estelle M. (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16: 3181-3195.
Nakamichi N. (2011) molecular mechanisms underlying the Arabidopsis circadian clock. Plant and Cell Physiology, 52, 1709-1718.
Nakamura N., Hirose S. (2008) Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Molecular Biology of the Cell, 19, 1903-1911.
Pan R., Kaur N., Hu J. (2014) The Arabidopsis mitochondrial membrane-bound ubiquitin protease UBP27 contributes to mitochondrial morphogenesis. The Plant Journal, 78, 1047-1059.
Park C.-W., Ryu K.-Y. (2014) Cellular ubiquitin pool dynamics and homeostasis. BMB Reports, 47, 475-482.
Raasi S., Varadan R., Fushman D., Pickart C.M. (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nature, Structural and Molecular Biology, 12, 708-714.
Radjacommare R., Usharani R., Kuo C.-H., Fu H. (2014) Distinct phylogenetic relationships and biochemical properties of Arabidopsis ovarian tumor-related deubiquitinases support their functional differentiation. Frontiers in Plant Science, 5, 1-17.
Rao-naik C., Chandler J.S., Mcardle B., Callis J. (2000) Cloning of AtUBP5 and analysis of substrate specificity of AtUBP3, AtUBP4, and AtUBP5 using Escherichia coli in vivo and in vitro assays. Archives of Biochemistry and Biophysics, 379, 198-208.
Reyes-Turcu F.E., Horton J.R., Mullally J.E., Heroux A., Cheng X., Wilkinson K.D. (2006) The ubiquitin binding domain ZnF UBP recognizes the C-Terminal Diglycine motif of unanchored ubiquitin. Cell, 124, 1197-1208.
Scheuermann J.C., De Ayala Alonso A.G., Oktaba K., Ly-Harti N., McGinty R.K., Fraterman S., Wilm M., Muir T.W., Müller J. (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature, 465, 243-247.
Smalle J., Vierstra R.D. (2004) The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 55, 555-590.
Sridhar V.V., Kapoor A., Zhang K., Zhu J., Zhou T., Hasegawa P.M., Bressan R.A., Zhu J.K. (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 447, 735-738.
Sullivan M.L., Callis J., Vierstra R.D. (1990) High Performance liquid chromatography resolution of ubiquitin pathway enzymes from wheat germ. Plant Physiology, 94, 710-716.
Thrower J.S., Hoffman L., Rechsteiner M., Pickart C.M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO Journal, 19, 94-102.
Tzafrir I., McElver J.A., Liu C.-M., Yang L.J., Wu J.Q., Martinez A., Patton D.A., Meinke D.W. (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physiology, 128, 38-51.
Vandepoele K., Raes J., De Veylder L., Rouzé P., Rombauts S., Inzé D. (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. The Plant Cell, 14, 903-916.
Verma R., Aravind L., Oania R., Mcdonald W.H., Iii J.R.Y., Koonin E.V., Deshaies R.J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S Proteasome. Science, 298, 611-616.
Xu Y., Jin W., Li N., Zhang W., Liu C., Li C., Li C., Li Y. (2016) UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis. The Plant Cell, 28, 1200-1214.
Yan N., Doelling J.H., Falbel T.G., Durski A.M., Vierstra R.D. (2000) The ubiquitin-specific protease family from Arabidopsis, AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiology, 124, 1828-1843.
Yang P., Smalle J., Lee S., Yan N., Emborg T.J., Vierstra R.D. (2007) Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis. The Plant Journal, 51, 441-457.
Yen M.-R., Suen D.-F., Hsu F.-M., Tsai Y.-H., Fu H., Schmidt W., Chen P.-Y. (2017) Deubiquitinating enzyme OTU5 contributes to DNA methylation patterns and is critical for phosphate. Plant Physiology, 175, 1826-1838.
Zhao J., Zhou H., Zhang M., Gao Y., Li L., Gao Y., Li M., Yang Y., Guo Y., Li X. (2016) Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thaliana. Plant, Cell and Environment, 39, 427-440.
Zhu X., Menard R., Sulea T. (2007) High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins, 39, 1-7.
Grant Information:
BT/PR27952/INF/22/212/2018 DBT-IISc Partnership Program Phase-II
Contributed Indexing:
Keywords: Cysteine protease; de-ubiquitinase; proteostasis; ubiquitin homeostasis; ubiquitin-specific protease
Substance Nomenclature:
0 (Ubiquitin)
EC 3.4.- (Endopeptidases)
EC 3.4.99.- (ubiquitin isopeptidase)
Entry Date(s):
Date Created: 20200402 Date Completed: 20200817 Latest Revision: 20200817
Update Code:
20240105
DOI:
10.1111/plb.13118
PMID:
32233097
Czasopismo naukowe
A balance between the synthesis and degradation of active proteins governs diverse cellular processes in plants, spanning from cell-cycle progression and circadian rhythm to the outcome of several hormone signalling pathways. Ubiquitin-mediated post-translational modification determines the degradative fate of the target proteins, thereby altering the output of cellular processes. An equally important, and perhaps under-appreciated, aspect of this pathway is the antagonistic process of de-ubiquitination. De-ubiquitinases (DUBs), a group of processing enzymes, play an important role in maintaining cellular ubiquitin homeostasis by hydrolyzing ubiquitin poly-proteins and free poly-ubiquitin chains into mono-ubiquitin. Further, DUBs rescue the cellular proteins from 26S proteasome-mediated degradation to their active form by cleaving the poly-ubiquitin chain from the target protein. Any perturbation in DUB activity is likely to affect proteostasis and downstream cellular processes. This review illustrates recent findings on the biological significance and mechanisms of action of the DUBs in Arabidopsis thaliana, with an emphasis on ubiquitin-specific proteases (UBPs), the largest family among the DUBs. We focus on the putative roles of various protein-protein interaction interfaces in DUBs and their generalized function in ubiquitin recycling, along with their pre-eminent role in plant development.
(© 2020 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies