Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Defining Individual-Level Genetic Diversity and Similarity Profiles.

Tytuł:
Defining Individual-Level Genetic Diversity and Similarity Profiles.
Autorzy:
Ma ZS; Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .
Li L; Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Zhang YP; Molecular Evolution and Genome Diversity Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .
Źródło:
Scientific reports [Sci Rep] 2020 Apr 02; Vol. 10 (1), pp. 5805. Date of Electronic Publication: 2020 Apr 02.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Heterozygote*
Models, Genetic*
Polymorphism, Single Nucleotide*
Genome-Wide Association Study/*methods
Entropy ; Genome ; Humans
References:
Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304 (2017). (PMID: 10.1038/ng.3941)
Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z. & Bergmann, S. Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics. Plos Comput. Biol. 12, e1004714 (2016). (PMID: 10.1371/journal.pcbi.1004714)
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015). (PMID: 10.1038/nature15393)
Tang, W. et al. SNP-based analysis of genetic diversity reveals important alleles associated with seed size in rice. BMC Plant Biol. 16, 93 (2016). (PMID: 10.1186/s12870-016-0779-3)
Amos, W. Even small SNP clusters are non-randomly distributed: is this evidence of mutational non-independence? Proc. R. Soc. B Biol. Sci. 277, 1443–1449 (2010). (PMID: 10.1098/rspb.2009.1757)
Beliakov, G., Sola, H. B. & Sánchez, T. C. A Practical Guide to Averaging Functions. (2015).
James, S. An Introduction to Data Analysis using Aggregation Functions in R., https://doi.org/10.1007/978-3-319-46762-7 (2016).
Shannon, C. E. A Mathematical Theory of Communication. Bell System Technical Journal 27 (1948).
Chao, A., Chiu, C.-H. & Hsieh, T. C. Proposing a resolution to debates on diversity partitioning. Ecology 93, 2037–2051 (2012). (PMID: 10.1890/11-1817.1)
Chao, A., Chiu, C. H. & Lou, J. Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014). (PMID: 10.1146/annurev-ecolsys-120213-091540)
Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007). (PMID: 10.1890/06-1736.1)
Ellison Aaron, M. Partitioning diversity. Ecology 91, 1962–1963 (2010). (PMID: 10.1890/09-1692.1)
Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321–3323 (1973). (PMID: 10.1073/pnas.70.12.3321)
Nei, M. & Li, W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979). (PMID: 10.1073/pnas.76.10.5269)
Hill, M. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 54 (1973).
Renyi, A. On measures of information and entropy. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1960 1 (1961).
Kaplinsky, J. & Arnaout, R. Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples. Nature Communications 7, 11881, https://doi.org/10.1038/ncomms11881 (2016). (PMID: 10.1038/ncomms1188149126254912625)
Golan, A. Information and Entropy Econometrics — A Review and Synthesis, Foundations and Trends in Econometrics, vol. 2, no 1–2, pp 1–145 (2006).
Hastings, M. B., Gonzalez, I., Kallin, A. B. & Melko, R. G. Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. Physical Review Letters 104, 157201 (2010). (PMID: 10.1103/PhysRevLett.104.157201)
Ma, Z. & Li, L. Measuring Metagenome Diversity and Similarity with Hill Numbers. Molecular Ecology Resources 18 (2018).
Sherwin, W. B., Chao, A., Jost, L. & Smouse, P. E. Information Theory Broadens the Spectrum of Molecular Ecology and Evolution. Trends Ecol. Evol. 32, 948–963 (2017). (PMID: 10.1016/j.tree.2017.09.012)
Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015). (PMID: 10.1038/nature15394)
Wehenkel, C., Bergmann, F. & Gregorius, H. R. Is there a trade-off between species diversity and genetic diversity in forest tree communities? Plant Ecol. 185, 151–161 (2006). (PMID: 10.1007/s11258-005-9091-2)
Bergmann, F., Gregorius, H., Kownatzki, D. & Wehenkel, C. Different diversity measures and genetic traits reveal different speciesgenetic diversity relationships: A case study in forest tree communities. Silvae Genet. 62, 25–38 (2013). (PMID: 10.1515/sg-2013-0004)
Gaston, K. Biodiversity: a biology of numbers and difference. In (Cambridge, MA: Blackwell Science, 1996).
Shannon, C. E. & Weaver, W. The mathematical theory of communication. Bell Labs Tech. J. 3, 31–32 (1950).
Chiu, CH., Jost, L. & Chao, A. Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs 84 (2014).
Gotelli, N. J. & Chao, A. Measuring and Estimating Species Richness, Species Diversity, and Biotic Similarity from Sampling Data. Encycl. Biodivers. 195–211 (2013).
Gotelli, N. J. & Ellison, A. M. A Primer of Ecological Statistics. (Sinauer Associates Inc. 2ed, 2013).
Ma, Z. S., Li, L. W. & Gotelli, N. J. Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. The ISME Journal. 13(8), 1911–1919 (2019). (PMID: 10.1038/s41396-019-0395-y)
Gaggiotti, O. E. et al. Diversity from genes to ecosystems: A unifying framework to study variation across biological metrics and scales. Evolutionary Applications, https://doi.org/10.1111/eva.12593 (2018).
Entry Date(s):
Date Created: 20200404 Date Completed: 20201124 Latest Revision: 20210402
Update Code:
20240105
PubMed Central ID:
PMC7118122
DOI:
10.1038/s41598-020-62362-8
PMID:
32242069
Czasopismo naukowe
Classic concepts of genetic (gene) diversity (heterozygosity) such as Nei & Li's nucleotide diversity were defined within a population context. Although variations are often measured in population context, the basic carriers of variation are individuals. Hence, measuring variations such as SNP of an individual against a reference genome, which has been ignored previously, is certainly in its own right. Indeed, similar practice has been a tradition in community ecology, where the basic unit of diversity measure is individual community sample. We propose to use Renyi's-entropy-based Hill numbers to define individual-level genetic diversity and similarity and demonstrate the definitions with the SNP (single nucleotide polymorphism) datasets from the 1000-Genomes Project. Hill numbers, derived from Renyi's entropy (of which Shannon's entropy is a special case), have found widely applications including measuring the quantum information entanglement and ecological diversity. The demonstrated individual-level SNP diversity not only complements the existing population-level genetic diversity concepts, but also offers building blocks for comparative genetic analysis at higher levels. The concept of individual covers, but is not limited to, individual chromosome, region of chromosome, gene cluster(s), or whole genome. Similarly, the SNP can be replaced by other structural variants or mutation types such as indels.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies