Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Adenosine kinase and adenosine receptors A 1 R and A 2A R in temporal lobe epilepsy and hippocampal sclerosis and association with risk factors for SUDEP.

Tytuł:
Adenosine kinase and adenosine receptors A 1 R and A 2A R in temporal lobe epilepsy and hippocampal sclerosis and association with risk factors for SUDEP.
Autorzy:
Patodia S; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.; School of Cancer Sciences, University of Southampton, Southampton, UK.
Paradiso B; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.; School of Cancer Sciences, University of Southampton, Southampton, UK.
Garcia M; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.; School of Cancer Sciences, University of Southampton, Southampton, UK.
Ellis M; Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK.
Diehl B; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.; School of Cancer Sciences, University of Southampton, Southampton, UK.
Thom M; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.; School of Cancer Sciences, University of Southampton, Southampton, UK.; Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK.
Devinsky O; Langone Comprehensive Epilepsy Center, New York University, New York, New York.
Źródło:
Epilepsia [Epilepsia] 2020 Apr; Vol. 61 (4), pp. 787-797. Date of Electronic Publication: 2020 Apr 03.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: Malden, MA : Blackwell Science
Original Publication: Copenhagen : Munskgaard
MeSH Terms:
Sudden Unexpected Death in Epilepsy*/etiology
Sudden Unexpected Death in Epilepsy*/pathology
Adenosine Kinase/*metabolism
Epilepsy, Temporal Lobe/*metabolism
Receptor, Adenosine A1/*metabolism
Receptor, Adenosine A2A/*metabolism
Adult ; Epilepsy, Temporal Lobe/pathology ; Epilepsy, Temporal Lobe/physiopathology ; Female ; Hippocampus/pathology ; Humans ; Male ; Risk Factors ; Sclerosis/pathology
References:
Canas PM, Porciuncula LO, Simoes AP, Augusto E, Silva HB, Machado NJ, et al. Neuronal adenosine A2A receptors are critical mediators of neurodegeneration triggered by convulsions. eNeuro. 2018;5:6.
Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull. 2019;151:46-54.
Van Gompel JJ, Bower MR, Worrell GA, Stead M, Chang SY, Goerss SJ, et al. Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia. 2014;55:233-44.
Barros-Barbosa AR, Ferreirinha F, Oliveira A, Mendes M, Lobo MG, Santos A, et al. Adenosine A2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE). Purinergic Signal. 2016;12:719-34.
He X, Chen F, Zhang Y, Gao Q, Guan Y, Wang J, et al. Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen's encephalitis. Brain Pathol. 2020;30(2):246-60.
Luan G, Gao Q, Zhai F, Zhou J, Liu C, Chen Y, et al. Adenosine kinase expression in cortical dysplasia with balloon cells: analysis of developmental lineage of cell types. J Neuropathol Exp Neurol. 2015;74:132-47.
Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol. 2016;15:1075-88.
Erlichman JS, Leiter JC, Gourine AV. ATP, glia and central respiratory control. Respir Physiol Neurobiol. 2010;31(173):305-11.
Boison D. Adenosine dysfunction in epilepsy. Glia. 2012;60:1234-43.
Shen HY, Li T, Boison D. A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance. Epilepsia. 2010;51:465-8.
Zhang J, Yin D, Wu F, Zhang G, Jiang C, Li Z, et al. Microinjection of adenosine into the hypothalamic ventrolateral preoptic area enhances wakefulness via the A1 receptor in rats. Neurochem Res. 2013;38:1616-23.
Scislo TJ, O'Leary DS. Purinergic mechanisms of the nucleus of the solitary tract and neural cardiovascular control. Neurol Res. 2005;27:182-94.
Faingold CL, Randall M, Kommajosyula SP. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Res. 2016;124:49-54.
Kommajosyula SP, Randall ME, Faingold CL. Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats. Epilepsy Res. 2016;119:13-9.
Allen LA, Harper RM, Kumar R, Guye M, Ogren JA, Lhatoo SD, et al. Dysfunctional brain networking among autonomic regulatory structures in temporal lobe epilepsy patients at high risk of sudden unexpected death in epilepsy. Front Neurol. 2017;8:544.
Wandschneider B, Koepp M, Scott C, Micallef C, Balestrini S, Sisodiya SM, et al. Structural imaging biomarkers of sudden unexpected death in epilepsy. Brain. 2015;138:2907-19.
DeGiorgio CM, Curtis A, Hertling D, Moseley BD. Sudden unexpected death in epilepsy: Risk factors, biomarkers, and prevention. Acta Neurol Scand. 2019;139:220-30.
Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54:1315-29.
Cieslak M, Wojtczak A, Komoszynski M. Role of the purinergic signaling in epilepsy. Pharmacol Rep. 2017;69:130-8.
Richerson GB, Boison D, Faingold CL, Ryvlin P. From unwitnessed fatality to witnessed rescue: Pharmacologic intervention in sudden unexpected death in epilepsy. Epilepsia. 2016;57(Suppl 1):35-45.
Luan G, Wang X, Gao Q, Guan Y, Wang J, Deng J, et al. Upregulation of neuronal adenosine A1 receptor in human rasmussen encephalitis. J Neuropathol Exp Neurol. 2017;1(76):720-31.
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139:1019-55.
Lacuey N, Hampson JP, Theeranaew W, Zonjy B, Vithala A, Hupp NJ, et al. Cortical structures associated with human blood pressure control. JAMA Neurol. 2018;1(75):194-202.
Lacuey N, Zonjy B, Theerannaew W, Loparo KA, Tatsuoka C, Sahadevan J, et al. Left-insular damage, autonomic instability, and sudden unexpected death in epilepsy. Epilepsy Behav. 2016;55:170-3.
Ogren JA, Tripathi R, Macey PM, Kumar R, Stern JM, Eliashiv DS, et al. Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neuroimage Clin. 2018;20:205-15.
Allen LA, Harper RM, Lhatoo S, Lemieux L, Diehl B. Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): insights from structural and resting-state functional MRI studies. Front Neurol. 2019;10:185.
Kalaria RN, Harik SI. Adenosine receptors and the nucleoside transporter in human brain vasculature J Cereb Blood Flow Metab. 1988;8:32-9.
Bynoe MS, Viret C, Yan A, Kim DG. Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS. 2015;2(12):20.
Michalak Z, Obari D, Ellis M, Thom M, Sisodiya SM. Neuropathology of SUDEP: Role of inflammation, blood-brain barrier impairment, and hypoxia. Neurology. 2017;7(88):551-61.
Gorter JA, Aronica E, van Vliet EA. The roof is leaking and a storm is raging: repairing the blood-brain barrier in the fight against epilepsy. Epilepsy Curr. 2019;19:177-81.
Beamer E, Conte G, Engel T. ATP release during seizures - a critical evaluation of the evidence. Brain Res Bull. 2019;151:65-73.
Boison D, Steinhauser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235-43.
Steinhauser C, Grunnet M, Carmignoto G. Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience. 2016;323:157-69.
Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C, et al. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia. 2011;52:1645-55.
Kiese K, Jablonski J, Boison D, Kobow K. Dynamic regulation of the adenosine kinase gene during early postnatal brain development and maturation. Front Mol Neurosci. 2016;9:99.
Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse. 1997;27:322-35.
Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. Neuroscience. 1987;22:827-39.
Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP. Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett. 2001;297(3):211-5.
Glass M, Faull RL, Bullock JY, Jansen K, Mee EW, Walker EB, et al. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res. 1996;26(710):56-68.
Graebenitz S, Kedo O, Speckmann EJ, Gorji A, Panneck H, Hans V, et al. Interictal-like network activity and receptor expression in the epileptic human lateral amygdala. Brain. 2011;134:2929-47.
Nakayama Y, Masuda H, Shirozu H, Ito Y, Higashijima T, Kitaura H, et al. Features of amygdala in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an MRI volumetric and histopathological study. Epilepsy Res. 2017;135:50-5.
Latreille V, Abdennadher M, Dworetzky BA, Ramel J, White D, Katz E, et al. Nocturnal seizures are associated with more severe hypoxemia and increased risk of postictal generalized EEG suppression. Epilepsia. 2017;58:e127-e131.
Nobis WP, Schuele S, Templer JW, Zhou G, Lane G, Rosenow JM, et al. Amygdala-stimulation-induced apnea is attention and nasal-breathing dependent. Ann Neurol. 2018;83:460-71.
Lacuey N, Zonjy B, Londono L, Lhatoo SD. Amygdala and hippocampus are symptomatogenic zones for central apneic seizures. Neurology. 2017;88:701-5.
Dlouhy BJ, Gehlbach BK, Kreple CJ, Kawasaki H, Oya H, Buzza C, et al. Breathing inhibited when seizures spread to the amygdala and upon amygdala stimulation. J Neurosci. 2015;15(35):10281-9.
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev. 2011;63:1-34.
Aiba I, Noebels JL. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci Transl Med. 2015;7(282):282ra46.
Loonen ICM, Jansen NA, Cain SM, Schenke M, Voskuyl RA, Yung AC, et al. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain. 2019;142:412-25.
Lindquist BE, Shuttleworth CW. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices. Neuroscience. 2012;223:365-76.
Baines AE, Correa SA, Irving AJ, Frenguelli BG. Differential trafficking of adenosine receptors in hippocampal neurons monitored using GFP- and super-ecliptic pHluorin-tagged receptors. Neuropharmacology. 2011;61:1-11.
Grant Information:
U01 NS090415 United States NS NINDS NIH HHS; U01 NS090405 United States NS NINDS NIH HHS; 5U01NS090415 United States NS NINDS NIH HHS
Contributed Indexing:
Keywords: adenosine kinase; adenosine receptors; amygdala; gliosis; temporal lobe epilepsy
Substance Nomenclature:
0 (ADORA2A protein, human)
0 (Receptor, Adenosine A1)
0 (Receptor, Adenosine A2A)
EC 2.7.1.20 (Adenosine Kinase)
Entry Date(s):
Date Created: 20200404 Date Completed: 20201016 Latest Revision: 20210610
Update Code:
20240105
DOI:
10.1111/epi.16487
PMID:
32243580
Czasopismo naukowe
Objective: The "adenosine hypothesis of SUDEP" (sudden unexpected death in epilepsy) predicts that a seizure-induced adenosine surge combined with impaired metabolic clearance can foster lethal apnea or cardiac arrest. Changes in adenosine receptor density and adenosine kinase (ADK) occur in surgical epilepsy patients. Our aim was to correlate the distribution of ADK and adenosine A 2A and A 1 receptors (A 2A R and A 1 R) in surgical tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE/HS) with SUDEP risk factors.
Methods: In 75 cases, patients were stratified into high-risk (n = 16), medium-risk (n = 11) and low-risk (n = 48) categories according to the frequency of generalized seizures before surgery. Using whole-slide scanning Definiens image analysis we quantified the labeling index (LI) for ADK, A 2A R, and A 1 R in seven regions of interest: temporal cortex, temporal lobe white matter, CA1, CA4, dentate gyrus, subiculum, and amygdala and relative to glial and neuronal densities with glial fibrillary acidic protein (GFAP) and neuronal nuclear antigen (NeuN).
Results: A 1 R showed predominant neuronal, A 2A R astroglial, and ADK nuclear labeling in all regions but with significant variation. Compared with the low-risk group, the high-risk group had significantly lower A 2A R LI in the temporal cortex. In HS cases with severe neuronal cell loss and gliosis predominantly in the CA1 and CA4 regions, significantly higher A 1 R was present in the amygdala in high-risk than in low-risk cases. There was no significant difference in neuronal loss or gliosis between the risk groups or differences for ADK labeling.
Significance: Reduced cortical A 2A R suggests glial dysfunction and impaired adenosine modulation in response to seizures in patients at higher risk for SUDEP. Increased neuronal A 1 R in the high-risk group could contribute to periictal amygdala dysfunction in SUDEP.
(© 2020 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies