Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Infraspecific diversification of the star cloak fern (Notholaena standleyi) in the deserts of the United States and Mexico.

Tytuł:
Infraspecific diversification of the star cloak fern (Notholaena standleyi) in the deserts of the United States and Mexico.
Autorzy:
Kao TT; Department of Biology, Duke University, Durham, North Carolina, 27708, USA.
Rothfels CJ; University Herbarium and Department of Integrative Biology, University of California, Berkeley, California, 94720, USA.
Melgoza-Castillo A; Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua CP, 31000, Mexico.
Pryer KM; Department of Biology, Duke University, Durham, North Carolina, 27708, USA.
Windham MD; Department of Biology, Duke University, Durham, North Carolina, 27708, USA.
Źródło:
American journal of botany [Am J Bot] 2020 Apr; Vol. 107 (4), pp. 658-675. Date of Electronic Publication: 2020 Apr 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: <2018-> : [Philadelphia, PA] : Wiley
Original Publication: Baltimore Md : Botanical Society Of America
MeSH Terms:
Ferns*
Pteridaceae*
Mexico ; Phylogeny ; Southwestern United States ; United States
References:
Beck, J. B., M. D. Windham, G. Yatskievych, and K. M. Pryer. 2010. A diploids-first approach to species delimitation and interpreting polyploid evolution in the fern genus Astrolepis (Pteridaceae). Systematic Botany 35: 223-234.
Benham, D. M. 1988. Chromosome number reports XCIX Á. Löve [ed.],. Taxon 37: 396-399.
Bouckaert, R., J. Heled, D. Kühnert, T. G. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, et al. 2013. Beast2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: 1003537.
DNASTAR. 2019. SeqMan Pro. Version 16.0.0.
Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.
Grusz, A. L., M. D. Windham, and K. M. Pryer. 2009. Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae). American Journal of Botany 96: 1636-1645.
Grusz, A. L., M. D. Windham, G. Yatskievych, R. L. Huiet, G. J. Gastony, and K. M. Pryer. 2014. Patterns of diversification in the xeric-adapted fern genus Myriopteris (Pteridaceae). Systematic Botany 39: 698-714.
Hevly, R. H. 1963. Adaptations of cheilanthoid ferns to desert environments. Journal of the Arizona Academy of Science 2: 164-175.
Hietz, P. 2010. Fern adaptations to xeric environments. In K. Mehltreter, L. R. Walker, and J. M. Sharpe [eds.], Fern Ecology, 140-176. Cambridge University Press, Cambridge.
Jackson, R.C., and J. Casey. 1980. Cytogenetics of polyploids. In W. Lewis [ed.], Polyploidy: biological relevance, 17-44, Plenum Publishing Corporation, New York.
Jackson, R. C., and J. Casey. 1982. Cytogenetic analyses of autopolyploids: models and methods for triploids to octoploids. American Journal of Botany 69: 489-503.
Johnson, A. K., C. J. Rothfels, M. D. Windham, and K. M. Pryer. 2012. Unique expression of a sporophytic character on the gametophytes of notholaenid ferns (Pteridaceae). American Journal of Botany 99: 1118-1124.
Kao, T.-T., K. M. Pryer, F. D. Freund, M. D. Windham, and C. J. Rothfels. 2019. Low-copy nuclear sequence data confirm complex patterns of farina evolution in notholaenid ferns (Pteridaceae). Molecular Phylogenetics and Evolution 138: 139-155.
Knobloch, I. W., W. Tai, and T. A. Ninan. 1973. The cytology of some species of the genus Notholaena. American Journal of Botany 60: 92.
Larsson, A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276-3278.
Levin, D. A. 1975. Minority Cytotype Exclusion in Local Plant Populations. Taxon 24: 35-43.
Li, F. W., L. Y. Kuo, Y. M. Huang, W. L. Chiou, and C. N. Wang. 2010. Tissue-direct PCR, a rapid and extraction-free method for barcoding of ferns. Molecular Ecology Resources 10: 92-95.
Liu, H. M., S. R. Russell, J. Vogel, and H. Schneider. 2018. Inferring the potential of plastid DNA-based identification of derived ferns: a case study on the Asplenium trichomanes aggregate in Europe. Plant Systematics and Evolution 304: 1009-1022.
Lovis, J. D. 1978. Evolutionary Patterns and Processes in Ferns. Advances in Botanical Research 4: 229-415.
Mickel, J. T., and A. R. Smith. 2004. The Pteridophytes of Mexico. The New York Botanical Garden, New York, Bronx.
Morafka, D. J. 1977. A Biogeographical Analysis of the Chihuahuan Desert through its Herpetofauna. Springer, Netherlands, Dordrecht.
Moran, R. C. 1982. The Asplenium trichomanes Complex in the United States and Adjacent Canada. American Fern Journal 72: 5.
Nagalingum, N. S., H. Schneider, and K. M. Pryer. 2007. Molecular phylogenetic relationships and morphological evolution in the heterosporous fern genus Marsilea. Systematic Botany 32: 16-25.
Otto, S. P., and J. Whitton. 2000. Polyploid Incidence and Evolution. Annual Review of Genetics 34: 401-437.
PPG I. 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563-603.
Proctor, M. C. F., and V. C. Pence. 2002. Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In M. Black and H. W. Pritchard [eds.], Desiccation and survival in plants: Drying without dying, 207-237. CABI Publishing, Wallingford, UK.
Proctor, M. C. F., and Z. Tuba. 2002. Poikilohydry and homoihydry: Antithesis or spectrum of possibilities? New Phytologist 156: 327-349.
Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7 E. Susko [ed.]. Systematic Biology 67: 1-3.
R Development Core Team. 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rhoads, A., and K. F. Au. 2015. PacBio sequencing and its applications. Genomics, Proteomics and Bioinformatics 13: 278-289.
Riddle, B. R., and D. J. Hafner. 2006. A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota. Journal of Arid Environments 66: 435-461.
Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.
Rothfels, C. J., and S. P. Otto. 2016. Polyploid speciation. Encyclopedia of Evolutionary Biology, 317-326. Elsevier.
Rothfels, C. J., M. D. Windham, A. L. Grusz, G. J. Gastony, and K. M. Pryer. 2008. Toward a monophyletic Notholaena (Pteridaceae): Resolving patterns of evolutionary convergence in xeric-adapted ferns. Taxon 57: 712-724.
Rothfels, C. J., A. Larsson, F.-W. Li, E. M. Sigel, L. Huiet, D. O. Burge, M. Ruhsam, et al. 2013. Transcriptome-mining for single-copy nuclear markers in ferns. PLoS One 8: e76957.
Rothfels, C. J., K. M. Pryer, and F. W. Li. 2017. Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytologist 213: 413-429.
Schuettpelz, E., and K. M. Pryer. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56: 1037-1050.
Schuettpelz, E., K. M. Pryer, and M. D. Windham. 2015. A unified approach to taxonomic delimitation in the fern genus Pentagramma (Pteridaceae). Systematic Botany 40: 629-644.
Seigler, D. S., and E. Wollenweber. 1983. Chemical variation in Notholaena standleyi. American Journal of Botany 70: 790-798.
Sigel, E. M., M. D. Windham, L. Huiet, G. Yatskievych, and K. M. Pryer. 2011. Species relationships and farina evolution in the cheilanthoid fern genus Argyrochosma (Pteridaceae). Systematic Botany 36: 554-564.
Smith, A. R. 1974. Taxonomic and cytological notes on ferns from California and Arizona. Madroño 22: 376-378.
Soltis, D. E., and L. H. Rieseberg. 1986. Autopolyploidy in Tolmiea menziesii (Saxifragaceae): evidence from enzyme electrophoresis. American Journal of Botany 73: 310-318.
Spoelhof, J. P., P. S. Soltis, and D. E. Soltis. 2017. Pure polyploidy: Closing the gaps in autopolyploid research. Journal of Systematics and Evolution 55: 340-352.
Swofford, D. L. 2003. PAUP*. phylogenetic analysis using Parsimony (*and other methods) Version 4. Sinauer, Sunderland, Massachusetts, USA. Nat. Biotechnol. 18: 233-234.
Testo, W., and M. Sundue. 2016. A 4000-species dataset provides new insight into the evolution of ferns. Molecular Phylogenetics and Evolution 105: 200-211.
Tigerschiold, E. 1981. The Asplenium trichomanes complex in East Central Sweden. Nordic Journal of Botany 1: 12-16.
Travers, K. J., C. S. Chin, D. R. Rank, J. S. Eid, and S. W. Turner. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Research 38: e159-e159.
Tryon, A. F. 1947. Glandular prothallia of Notholaena standleyi. American Fern Journal 37: 88-89.
Wei, R., Y. H. Yan, A. J. Harris, J. S. Kang, H. Shen, Q. P. Xiang, and X. C. Zhang. 2017. Plastid phylogenomics resolve deep relationships among eupolypod II ferns with rapid radiation and rate heterogeneity. Genome Biology and Evolution 9: 1646-1657.
Windham, M. D. 1993a. Notholaena. In Flora of North America editorial committee [ed.],Flora of North America North of Mexico, 143-149. Oxford University Press, New York.
Windham, M. D. 1993b. Pellaea. In Flora of North America editorial committee [ed.], Flora of North America North of Mexico, 175-186. Oxford University Press, New York.
Windham, M. D., and C. G. Schaack. 1983. Miscellaneous chromosome counts for Adiantaceae, Aspleniaceae, Asteraceae, and Poaceae. In Á. Löve [ed.], IOPB chromosome number reports LXXXI. Taxon, 664-665.
Windham, M. D., and G. Yatskievych. 2003. Chromosome studies of cheilanthoid ferns (Pteridaceae: Cheilanthoideae) from the western United States and Mexico. American Journal of Botany 90: 1788-1800.
Wollenweber, E. 1984. Exudate flavonoids of Mexican ferns as chemotaxonomic markers. Rev. Latinoamer. Quim 15: 11.
Wollenweber, E., and H. Schneider. 2000. Lipophilic exudates of Pteridaceae-chemistry and chemotaxonomy. Biochemical Systematics and Ecology 28: 751-777.
Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, and L. H. Rieseberg. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences 106: 13875-13879.
Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, The University of Texas at Austin.
Grant Information:
International U.S. Department of Agriculture; DEB-1701942 International U.S. National Science Foundation; International Taiwan Ministry of Education; International Duke University
Contributed Indexing:
Keywords: Pteridaceae; amplicon sequencing; biogeography; cheilanthoids; farina; flavonoids; limestone; missing diploids; phylogenetics; polyploid speciation
Molecular Sequence:
GENBANK MN876592; MN875967; MN876466; MN876675; MN876249; MN876333; MN876732; MN876523; MN876656; MN876002; MN876501; MN876710; MN876300; MN876372; MN876780; MN876569; MN876665; MN876008; MN876507; MN876716; MN876308; MN876379; MN876788; MN876789; MN876576; MN876651; MN875999; MN876498; MN876707; MN876295; MN876369; MN876439; MN876440; MN876774; MN876775; MN876563; MN876564; MN876642; MN876645; MN875997; MN876496; MN876705; MN876292; MN876293; MN876367; MN876436; MN876437; MN876771; MN876772; MN876560; MN876561; MN876639; MN876644; MN876650; MN876643; MN875996; MN876495; MN876704; MN876291; MN876366; MN876434; MN876435; MN876770; MN876559; MN876637; MN876641; MN876591; MN876595; MN876646; MN876606; MN875978; MN876477; MN876686; MN876265; MN876347; MN876410; MN876747; MN876748; MN876536; MN876640; MN876649; MK632841; MK632472; MK632473; MK632598; MK632685; MK632804; MK632805; MN876607; MN875979; MN876478; MN876687; MN876266; MN876267; MN876411; MN876412; MN876749; MN876537; MN876648; MN876594; MN876615; MN875987; MN876486; MN876695; MN876281; MN876359; MN876423; MN876424; MN876759; MN876760; MN876547; MN876548; MN876647; MN875998; MN876497; MN876706; MN876294; MN876368; MN876438; MN876773; MN876562; EU268705; MK632471; MK632597; MK632684; MK632802; MK632803; MN876605; MN875977; MN876476; MN876685; MN876263; MN876264; MN876346; MN876408; MN876409; MN876746; MN876535; MN876652; MN876000; MN876499; MN876708; MN876296; MN876297; MN876776; MN876777; MN876565; MN876566; MN876655; MN876001; MN876500; MN876709; MN876298; MN876299; MN876370; MN876371; MN876441; MN876778; MN876779; MN876567; MN876568; EU268707; MK632842; MK632474; MK632475; MK632599; MK632686; MK632687; MN876608; MN875980; MN876479; MN876688; MN876268; MN876269; MN876348; MN876349; MN876413; MN876750; MN876751; MN876538; MN876539; MN876609; MN875981; MN876480; MN876689; MN876270; MN876271; MN876350; MN876351; MN876414; MN876752; MN876753; MN876540; MN876541; MN876599; MN875971; MN876470; MN876679; MN876254; MN876255; MN876338; MN876339; MN876401; MN876738; MN876739; MN876528; MN876529; MN876598; MN875970; MN876469; MN876678; MN876252; MN876253; MN876336; MN876337; MN876400; MN876736; MN876737; MN876526; MN876527; MN876633; MN876638; MN875995; MN876494; MN876703; MN876289; MN876290; MN876433; MN876768; MN876769; MN876557; MN876558; MN876627; MN876626; MN875992; MN876491; MN876700; MN876658; MN876003; MN876502; MN876711; MN876301; MN876302; MN876373; MN876374; MN876442; MN876781; MN876782; MN876570; MN876571; MN876631; MN875993; MN876492; MN876701; MN876286; MN876287; MN876364; MN876430; MN876765; MN876766; MN876554; MN876555; MN876632; MN876617; MN875989; MN876488; MN876697; EU268708; MK632476; MK632477; MK632600; MK632601; MK632688; MK632689; MN876620; MN875991; MN876490; MN876699; MN876284; MN876285; MN876363; MN876429; MN876763; MN876764; MN876552; MN876553; MN876621; MN876663; MN876654; MN876661; MN876603; MN875975; MN876474; MN876683; MN876260; MN876261; MN876343; MN876344; MN876405; MN876743; MN876744; MN876533; MN876659; MN876004; MN876503; MN876712; MN876303; MN876304; MN876375; MN876443; MN876444; MN876783; MN876572; MN876664; MN876007; MN876506; MN876715; MN876306; MN876307; MN876378; MN876446; MN876447; MN876787; MN876575; MN876657; MN876660; MN876005; MN876504; MN876713; MN876784; MN876785; MN876573; MN876662; MN876006; MN876505; MN876714; MN876305; MN876376; MN876377; MN876445; MN876786; MN876574; MN876653; MN876610; MN875982; MN876481; MN876690; MN876272; MN876273; MN876352; MN876353; MN876415; MN876754; MN876542; MN876600; MN875972; MN876471; MN876680; MN876256; MN876340; MN876402; MN876740; MN876530; MN876612; MN875984; MN876483; MN876692; MN876276; MN876355; MN876418; MN876419; MN876756; MN876544; MN876611; MN875983; MN876482; MN876691; MN876274; MN876275; MN876354; MN876416; MN876417; MN876755; MN876543; EU268706; MK632478; MK632602; MK632690; MN876613; MN875985; MN876484; MN876693; MN876277; MN876278; MN876356; MN876357; MN876420; MN876421; MN876757; MN876545; MN876616; MN875988; MN876487; MN876696; MN876282; MN876360; MN876425; MN876426; MN876761; MN876549; MN876550; MN876634; MN875994; MN876493; MN876702; MN876288; MN876365; MN876431; MN876432; MN876767; MN876556; MN876635; MN876636; MK632843; MK632479; MK632480; MK632603; MK632691; MN876614; MN875986; MN876485; MN876694; MN876279; MN876280; MN876358; MN876422; MN876758; MN876546; MN876601; MN875973; MN876472; MN876681; MN876257; MN876258; MN876341; MN876403; MN876741; MN876531; MN876604; MN875976; MN876475; MN876684; MN876262; MN876345; MN876406; MN876407; MN876745; MN876534; MN876593; MN875968; MN876467; MN876676; MN876250; MN876334; MN876396; MN876397; MN876733; MN876524; MN876623; MN876596; MN875969; MN876468; MN876677; MN876251; MN876335; MN876398; MN876399; MN876734; MN876735; MN876525; MN876625; MN876630; MN876597; MN876602; MN875974; MN876473; MN876682; MN876259; MN876342; MN876404; MN876742; MN876532; MN876624; MN876618; MN875990; MN876489; MN876698; MN876283; MN876361; MN876362; MN876427; MN876428; MN876762; MN876551; MN876619; MN876628; MN876629; MN876622; MN876666; MN876009; MN876508; MN876717; MN876309; MN876310; MN876448; MN876449; MN876790; MN876791; MN876577; MN876667; MN876010; MN876509; MN876718; MN876311; MN876312; MN876380; MN876450; MN876792; MN876578; MK632818; MN876011; MN876510; MN876719; MN876313; MN876314; MN876381; MN876451; MN876793; MN876579; JQ855904; MN876012; MN876511; MN876720; MN876315; MN876316; MN876382; MN876452; MN876794; MN876580; MN876383; MN876581; JX313492; MN876013; MN876512; MN876721; MN876317; MN876453; MN876454; MN876795; MN876668; MN876014; MN876513; MN876722; MN876318; MN876319; MN876320; MN876384; MN876385; MN876455; MN876796; MN876582; MN876669; MN876015; MN876514; MN876723; MN876321; MN876322; MN876386; MN876456; MN876457; MN876797; MN876798; MN876583; MK632826; MN876016; MN876515; MN876724; MN876323; MN876387; MN876458; MN876799; MN876584; MN876670; MN876017; MN876516; MN876725; MN876324; MN876325; MN876388; MN876389; MN876459; MN876800; MN876585; MN876671; MN876018; MN876517; MN876726; MN876326; MN876390; MN876460; MN876801; MN876586; MN876672; MN876019; MN876518; MN876727; MN876327; MN876328; MN876391; MN876461; MN876802; MN876587; MK632836; MN876020; MN876519; MN876728; MN876329; MN876392; MN876462; MN876803; MN876588; MN876021; MN876520; MN876729; MN876330; MN876393; MN876463; MN876804; MN876805; MN876589; MN876673; MN876022; MN876521; MN876730; MN876331; MN876394; MN876464; MN876806; MN876590; MN876674; MN876023; MN876522; MN876731; MN876332; MN876395; MN876465; MN876807
Entry Date(s):
Date Created: 20200408 Date Completed: 20200504 Latest Revision: 20200505
Update Code:
20240105
DOI:
10.1002/ajb2.1461
PMID:
32253761
Czasopismo naukowe
Premise: Not all ferns grow in moist and shaded habitats. One well-known example is Notholaena standleyi, a species that thrives in deserts of the southwestern United States and Mexico. This species exhibits several "chemotypes" that differ in farina (flavonoid exudates) color and chemistry. By integrating data from molecular phylogenetics, cytology, biochemistry, and biogeography, we circumscribed the major evolutionary lineages within N. standleyi and reconstructed their diversification histories.
Methods: Forty-eight samples were selected from across the geographic distribution of N. standleyi. Phylogenetic relationships were inferred using four plastid and five nuclear markers. Ploidy levels were inferred using spore sizes calibrated by chromosome counts, and farina chemistry was compared using thin-layer chromatography.
Results: Four clades are recognized, three of which roughly correspond to previously recognized chemotypes. The diploid clades G and Y are found in the Sonoran and Chihuahuan deserts, respectively; they are estimated to have diverged in the Pleistocene, congruent with the postulated timing of climatological events separating these two deserts. Clade P/YG is tetraploid and partially overlaps the distribution of clade Y in the eastern Chihuahuan Desert. It is apparently confined to limestone, a geologic substrate rarely occupied by members of the other clades. The cryptic (C) clade, a diploid group known only from southern Mexico and highly disjunct from the other three clades, is newly recognized here.
Conclusions: Our results reveal a complex intraspecific diversification history of N. standleyi, traceable to a variety of evolutionary drivers including classic allopatry, parapatry with or without changes in geologic substrate, and sympatric divergence through polyploidization.
(© 2020 Botanical Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies