Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Intensification of tidally generated internal waves in the north-central Bay of Bengal.

Tytuł:
Intensification of tidally generated internal waves in the north-central Bay of Bengal.
Autorzy:
Jithin AK; Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, 500090, Telangana, India. .; Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, 530003, Andhra Pradesh, India. .
Subeesh MP; National Centre for Polar and Ocean Research (NCPOR), Vasco-da-Gama, Goa, 403 804, India.
Francis PA; Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, 500090, Telangana, India.
Ramakrishna SSVS; Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, 530003, Andhra Pradesh, India.
Źródło:
Scientific reports [Sci Rep] 2020 Apr 08; Vol. 10 (1), pp. 6059. Date of Electronic Publication: 2020 Apr 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
St.Laurent, L., Simmons, H. & Jayne, S. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters 29, 21–1 (2002). (PMID: 10.1029/2002GL015633)
Laurent, L. C. S. &  Nash, J. D.  On the fraction of internal tide energy dissipated near topography. In Proceedings of the 13th ‘Aha Huliko’ a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 45–58 (2004).
Alford, M. H. & Zhao, Z. Global patterns of low-mode internal-wave propagation. part-1: Energy and energy flux. Journal of Physical Oceanography 37, 1829–1848, https://doi.org/10.1175/JPO3085.1 (2007). (PMID: 10.1175/JPO3085.1)
Waterhouse, A. F. et al. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. Journal of Physical Oceanography 44, 1854–1872 (2014). (PMID: 10.1175/JPO-D-13-0104.1)
Müller, P. & Xu, N. Scattering of oceanic internal gravity waves off random bottom topography. Journal of physical oceanography 22, 474–488 (1992). (PMID: 10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2)
Olbers, D. & Eden, C. A closure for internal wave-mean flow interaction. part i: Energy conversion. Journal of Physical Oceanography 47, 1389–1401 (2017). (PMID: 10.1175/JPO-D-16-0054.1)
MacKinnon, J. A., Alford, M. H., Pinkel, R., Klymak, J. & Zhao, Z. The latitudinal dependence of shear and mixing in the pacific transiting the critical latitude for psi. Journal of Physical Oceanography 43, 3–16 (2013). (PMID: 10.1175/JPO-D-11-0107.1)
Alford, M. H. et al. The formation and fate of internal waves in the south china sea. Nature 521, 65–69 (2015). (PMID: 10.1038/nature14399)
Zhao, Z., Alford, M. H., MacKinnon, J. A. & Pinkel, R. Long-range propagation of the semidiurnal internal tide from the hawaiian ridge. Journal of Physical Oceanography 40, 713–736 (2010). (PMID: 10.1175/2009JPO4207.1)
Rainville, L. et al. Interference pattern and propagation of the m 2 internal tide south of the hawaiian ridge. Journal of physical oceanography 40, 311–325 (2010). (PMID: 10.1175/2009JPO4256.1)
Wang, Y., Xu, Z., Yin, B., Hou, Y. & Chang, H. Long-range radiation and interference pattern of multisource m2 internal tides in the philippine sea. Journal of Geophysical Research: Oceans 123, 5091–5112 (2018).
Jithin, A. K. et al. Observed tidal currents on the continental shelf off the east coast of India. Continental Shelf Research 141, 51–67, https://doi.org/10.1016/j.csr.2017.04.001 (2017a). (PMID: 10.1016/j.csr.2017.04.001)
Mohanty, S., Rao, A. & Latha, G. Energetics of semidiurnal internal tides in the andaman sea. Journal of Geophysical Research: Oceans 123, 6224–6240 (2018).
Jithin, A. K., Francis, P. A., Unnikrishnan, A. S. & Ramakrishna, S. S. V. S. Modeling of internal tides in the western Bay of Bengal: Characteristics and Energetics. Journal of Geophysical Research: Oceans 124, 1–27, https://doi.org/10.1029/2019JC015319 (2019). (PMID: 10.1029/2019JC015319)
Wijesekera, H. W. et al. Asiri: An ocean-atmosphere initiative for bay of bengal. Bulletin of the American Meteorological Society 97, 1859–1884 (2016). (PMID: 10.1175/BAMS-D-14-00197.1)
Mahadevan, A., Paluszkiewicz, T., Ravichandran, M., Sengupta, D. & Tandon, A. Introduction to the special issue on the bay of bengal: From monsoons to mixing. Oceanography 29, 14–17 (2016). (PMID: 10.5670/oceanog.2016.34)
Ray, R. D. & Mitchum, G. T. Surface manifestation of internal tides generated near hawaii. Geophysical Research Letters 23, 2101–2104 (1996). (PMID: 10.1029/96GL02050)
Sindhu, B. & Unnikrishnan, A. S. Characteristics of tides in the bay of bengal. Marine Geodesy 36, 377–407 (2013). (PMID: 10.1080/01490419.2013.781088)
Zhao, Z.,  Alford, M. H.,  Girton, J.,  Johnston, T. &  Carter, G.  Internal tides around the hawaiian ridge estimated from multisatellite altimetry. Journal of Geophysical Research: Oceans  116 (2011).
Dushaw, B. D. Mapping low-mode internal tides near hawaii using topex/poseidon altimeter data. Geophysical Research Letters 29, 91–1 (2002). (PMID: 10.1029/2001GL013944)
Zhao, Z. & Alford, M. H. New altimetric estimates of mode-1 m2 internal tides in the central north pacific ocean. Journal of Physical Oceanography 39, 1669–1684 (2009). (PMID: 10.1175/2009JPO3922.1)
Zhao, Z., Alford, M. H. & Girton, J. B. Mapping low-mode internal tides from multisatellite altimetry. Oceanography 25, 42–51 (2012). (PMID: 10.5670/oceanog.2012.40)
Zhao, Z. &  D’Asaro, E.  A perfect focus of the internal tide from the mariana arc. Geophysical Research Letters  38 (2011).
Paiva, A. M. et al. Internal tide generation at the vitória-trindade ridge, south atlantic ocean. Journal of Geophysical Research: Oceans 123, 5150–5159 (2018).
Rayleigh, L. Xvii on the resolving-power of telescopes. The London, Edinburgh, and Dublin. Philosophical Magazine and Journal of Science 10, 116–119 (1880). (PMID: 10.1080/14786448008626898)
Chaitanya, A. et al. Salinity measurements collected by fishermen reveal a “river in the sea” flowing along the eastern coast of india. Bulletin of the American Meteorological Society 95, 1897–1908 (2014). (PMID: 10.1175/BAMS-D-12-00243.1)
Papa, F.  et al.  Ganga-brahmaputra river discharge from jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the bay of bengal. Journal of Geophysical Research: Oceans  117 (2012).
Huang, X. et al. Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern south china sea. Journal of Physical Oceanography 48, 1749–1770 (2018). (PMID: 10.1175/JPO-D-17-0209.1)
Koch-Larrouy, A.  et al.  On the transformation of pacific water into indonesian throughflow water by internal tidal mixing. Geophysical Research Letters  34 (2007).
Liu, K. et al. Seasonal and spatial variations of the m2 internal tide in the yellow sea. Journal of Geophysical Research: Oceans 124, 1115–1138 (2019).
Rainville, L. & Pinkel, R. Propagation of low-mode internal waves through the ocean. Journal of Physical Oceanography 36, 1220–1236 (2006). (PMID: 10.1175/JPO2889.1)
Kelly, S. M., Jones, N. L., Nash, J. D. & Waterhouse, A. F. The geography of semidiurnal mode-1 internal-tide energy loss. Geophysical Research Letters 40, 4689–4693 (2013). (PMID: 10.1002/grl.50872)
Alford, M. H. et al. Energy flux and dissipation in luzon strait: Two tales of two ridges. Journal of Physical Oceanography 41, 2211–2222 (2011). (PMID: 10.1175/JPO-D-11-073.1)
Ray, R. D. & Mitchum, G. T. Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography 40, 135–162 (1997). (PMID: 10.1016/S0079-6611(97)00025-6)
Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (roms): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling 9, 347–404 (2005). (PMID: 10.1016/j.ocemod.2004.08.002)
Jithin, A. K.,  Francis, P. A.,  Chatterjee, A.,  Suprit, K. &  Fernando, V.  Validation of the simulations by the High-resolution Operational Ocean Forecast and reanalysis System (HOOFS) for the Bay of Bengal. Tech. Rep. INCOIS, http://moeseprints.incois.gov.in/4418/ (2017b).
Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19, 183–204 (2002). (PMID: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2)
Francis, P. A.  et al.  Structure and dynamics of undercurrents in the western boundary current of the bay of bengal. Ocean Dynamics 1–18, https://doi.org/10.1007/s10236-019-01340-9 (2020).
Allain, D. J.  Tugom tidal toolbox. Documentation available at ftp://ftp.legos.obs (2016).
Pugh, D. T.  Tides, Surges and Mean sea-level (John Wiley & Sons Ltd, 1987).
Kelly, S. &  Nash, J.  Internal-tide generation and destruction by shoaling internal tides. Geophysical Research Letters  37 (2010).
Kunze, E., Rosenfeld, L. K., Carter, G. S. & Gregg, M. C. Internal waves in monterey submarine canyon. Journal of Physical Oceanography 32, 1890–1913 (2002). (PMID: 10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2)
Carter, G. S. et al. Energetics of m 2 barotropic-to-baroclinic tidal conversion at the hawaiian islands. Journal of Physical Oceanography 38, 2205–2223 (2008). (PMID: 10.1175/2008JPO3860.1)
Buijsman, M. C., Uchiyama, Y., McWilliams, J. C. & Hill-Lindsay, C. Modeling semidiurnal internal tide variability in the southern california bight. Journal of Physical Oceanography 42, 62–77 (2012). (PMID: 10.1175/2011JPO4597.1)
Entry Date(s):
Date Created: 20200410 Date Completed: 20200904 Latest Revision: 20210408
Update Code:
20240105
PubMed Central ID:
PMC7142159
DOI:
10.1038/s41598-020-62679-4
PMID:
32269246
Czasopismo naukowe
Flow of barotropic tidal currents over topographic features, such as continental slopes and submarine ridges, generates internal gravity waves at tidal periods known as internal tides. Amplitude of these waves are generally large near the generation regions. Analysis of Sea Surface Height (SSH) data, derived from satellite altimeter revealed the amplification of internal tides in the semidiurnal period in the north-central Bay of Bengal (BoB) (around 89[Formula: see text]E, 16[Formula: see text]N), which is about 450 km away from their generation sites. SSH signals found in the north-central BoB ([Formula: see text]3 cm) were comparable to the maximum amplitudes (2.5 to 3.5 cm) observed near their potential generation sites in the BoB such as continental slopes in the head of the bay and Andaman-Nicobar (AN) Ridge. Simulations from a high-resolution regional ocean model also confirmed the presence of large internal tide amplitude in the north-central BoB. Our study revealed that convergence of internal tides, which were generated along the concave-shaped source (continental slopes in the head of the bay and the northern parts of AN Ridge), into its focal region caused their amplification in the north-central BoB. It was also found that internal tide energy dissipation rates in this focal region were about 10 times larger than those in other open ocean regions.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies