Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Cautionary Note on Extended Kaplan-Meier Curves for Time-varying Covariates.

Tytuł:
A Cautionary Note on Extended Kaplan-Meier Curves for Time-varying Covariates.
Autorzy:
Sjölander A; From the Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
Źródło:
Epidemiology (Cambridge, Mass.) [Epidemiology] 2020 Jul; Vol. 31 (4), pp. 517-522.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2000>- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: [Cambridge, MA : Blackwell Scientific Publications ; Chestnut Hill, MA : Epidemiology Resources, c1990-
MeSH Terms:
Cohort Studies*
Kaplan-Meier Estimate*
Research Design*
Causality ; Humans
References:
Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–481.
Snapinn S, Jiang Q, Iglewicz B. Illustrating the impact of a time-varying covariate with an extended Kaplan–Meier estimator. Am Stat. 2005;59:301–307.
Klein J, Moeschberger M. Survival Analysis: Techniques for Censored and Truncated Data. 2005.New York: Springer Science & Business Media.
Lichtenstein P, Halldner L, Zetterqvist J, et al. Medication for attention deficit–hyperactivity disorder and criminality. N Engl J Med. 2012;367:2006–2014.
Vigen R, O’Donnell CI, Barón AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829–1836.
Heinze G, Kainz A, Hörl WH, Oberbauer R. Mortality in renal transplant recipients given erythropoietins to increase haemoglobin concentration: cohort study. BMJ. 2009;339:b4018.
Conen D, Tedrow UB, Koplan BA, Glynn RJ, Buring JE, Albert CM. Influence of systolic and diastolic blood pressure on the risk of incident atrial fibrillation in women. Circulation. 2009;119:2146–2152.
Okin PM, Kjeldsen SE, Julius S, et al. All-cause and cardiovascular mortality in relation to changing heart rate during treatment of hypertensive patients with electrocardiographic left ventricular hypertrophy. Eur Heart J. 2010;31:2271–2279.
Van Gelder IC, Healey JS, Crijns HJGM, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017;38:1339–1344.
Larochelle MR, Liebschutz JM, Zhang F, Ross-Degnan D, Wharam JF. Opioid prescribing after nonfatal overdose and association with repeated overdose: a cohort study. Ann Intern Med. 2016;164:1–9.
Okin PM, Devereux RB, Harris KE, et al.; LIFE Study Investigators. Regression of electrocardiographic left ventricular hypertrophy is associated with less hospitalization for heart failure in hypertensive patients. Ann Intern Med. 2007;147:311–319.
Heneka MT, Fink A, Doblhammer G. Effect of pioglitazone medication on the incidence of dementia. Ann Neurol. 2015;78:284–294.
Lee CK, Marschner IC, Simes RJ, et al. Increase in cholesterol predicts survival advantage in renal cell carcinoma patients treated with temsirolimus. Clin Cancer Res. 2012;18:3188–3196.
Rubin D. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educat Psychol. 1974;66:688–701.
Pearl J. Causality: Models, Reasoning and Inference. 2009.2nd ed. New York: Cambridge University Press.
Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.
Abrahamowicz M, Beauchamp ME, Sylvestre MP. Comparison of alternative models for linking drug exposure with adverse effects. Stat Med. 2012;31:1014–1030.
Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–306.
Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–420.
Faraone SV, Buitelaar J. Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis. Eur Child Adolesc Psychiatry. 2010;19:353–364.
Hernán MA, Robins JM. Causal Inference: What If. 2020.Boca Raton, FL: Chapman & Hall/CRC.
Sylvestre MP, Abrahamowicz M. Flexible modeling of the cumulative effects of time-dependent exposures on the hazard. Stat Med. 2009;28:3437–3453.
Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med. 2014;33:881–899.
Entry Date(s):
Date Created: 20200414 Date Completed: 20210317 Latest Revision: 20210624
Update Code:
20240105
DOI:
10.1097/EDE.0000000000001188
PMID:
32282405
Czasopismo naukowe
The Kaplan-Meier curve is a standard statistical tool that is used in cohort studies to illustrate how survival during follow-up depends on time-fixed covariates that are measured at baseline. For time-varying covariates, an extended Kaplan-Meier curve has been proposed that is constructed by letting subjects move across risk sets as their covariate levels change during follow-up. It has been claimed, but not proven, that, under a particular independence assumption, this extended Kaplan-Meier curve has a causal interpretation as representing a hypothetical cohort whose covariate values remain constant during follow-up. In this note, we show that, in the absence of confounding, this claim is indeed correct. However, we argue that the causal implications of this independence assumptions are highly unrealistic, and that a causal interpretation of the extended Kaplan-Meier curve is therefore typically unwarranted.
Comment in: Epidemiology. 2021 Jul 1;32(4):e13-e14. (PMID: 34009823)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies