Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Low expression levels of nicotinic acetylcholine receptor subunits Boα1 and Boβ1 are associated with imidacloprid resistance in Bradysia odoriphaga.

Tytuł:
Low expression levels of nicotinic acetylcholine receptor subunits Boα1 and Boβ1 are associated with imidacloprid resistance in Bradysia odoriphaga.
Autorzy:
Shan T; Department of Entomology, China Agricultural University, Beijing, China.
Zhang H; Department of Entomology, China Agricultural University, Beijing, China.
Chen C; Department of Entomology, China Agricultural University, Beijing, China.
Chen A; Department of Entomology, China Agricultural University, Beijing, China.
Shi X; Department of Entomology, China Agricultural University, Beijing, China.
Gao X; Department of Entomology, China Agricultural University, Beijing, China.
Źródło:
Pest management science [Pest Manag Sci] 2020 Sep; Vol. 76 (9), pp. 3038-3045. Date of Electronic Publication: 2020 Apr 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
MeSH Terms:
Insecticides*/pharmacology
Receptors, Nicotinic*/genetics
Animals ; Insecticide Resistance/genetics ; Neonicotinoids/pharmacology ; Nitro Compounds/pharmacology
References:
Matsuda K, Ihara M and Sattelle DB, Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annu Rev Pharmacol Toxicol 60:241-255 (2020).
Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M and Sattelle DB, Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573-580 (2001).
Tomizawa M and Casida JE, Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339-364 (2003).
Jeschke P, Nauen R, Schindler M and Elbert A, Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897-2908 (2011).
Bass C, Denholm I, Williamson MS and Nauen R, The global status of insect resistance to neonicotinoid insecticides. Pest Biochem Physiol 121:78-87 (2015).
Zhu G, Luo Y, Xue M, Zhao H, Sun X and Wang X, Effects of feeding on different host plants and diets on Bradysia odoriphaga population parameters and tolerance to heat and insecticides. J Econ Entomol 110:2371-2380 (2017).
Zhang YX, Ren YP, Wang XL, Liu Y and Wang NX, Responses to host plant volatiles and identification of odorant binding protein and chemosensory protein genes in Bradysia odoriphaga. ACS Omega 4:3800-3811 (2019).
Dang Z, Dong J, Gao Z, Jia H, Zhang K and Pan W, Biology and injury of Bradysia odoriphaga on leek in different types of cultivation. J Agric Univ Hebei 24:65-68 (2001).
Li XX, Ma XD, Xue M, Zhao HP and Li ZX, Toxic effects of clothianidin and other five kinds of insecticides to Bradysia odoriphaga. Acta Phyto Sin 41:225-229 (2014).
Chen CY, Shi XY, Desneux N, Han P and Gao XW, Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. Ecotoxicology 26:868-875 (2017).
Ding Q, Wang YT, Liu JJ, Shi XY, Gao XW and Song DL, Monitoring the resistance of field populations of Bradysia odoriphaga Yang et Zhang in the main leek producing areas in China. Chin J Appl Entomol 53:1242-1249 (2016).
Qi SM, Wu YF, Li RM, Zhang SC, Zhuang QY, Zhou XH et al., Detection of insecticide resistance of Bradysia odoriphaga in Shandong Province. Plant Prot 42:179-183 (2016).
Chen CY, Shan TS, Liu Y, Shi XY and Gao XW, Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga. Pest Manag Sci 75:1006-1013 (2019).
Chen CY, Shan TS, Liu Y, Wang CC, Shi XY and Gao XW, Identification and functional analysis of a cytochrome P450 gene involved in imidacloprid resistance in Bradysia odoriphaga Yang et Zhang. Pest Biochem Physiol 153:129-135 (2019).
Bass C, Puinean AM, Andrews M, Cutler P, Daniels M, Elias J et al., Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci 12:51 (2011).
Shi XG, Zhu YK, Xia XM, Qiao K, Wang HY and Wang KY, The mutation in nicotinic acetylcholine receptor beta 1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). J Food Agric Environ 10:1227-1230 (2012).
Liu ZW, Williamson MS, Lansdell SJ, Denholm I, Han ZJ and Millar NS, A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102:8420-8425 (2005).
Markussen MDK and Kristensen M, Low expression of nicotinic acetylcholine receptor subunit Md alpha 2 in neonicotinoid-resistant strains of Musca domestica L. Pest Manag Sci 66:1257-1262 (2010).
Chen XW, Li F, Chen AQ, Ma KS, Liang PZ, Liu Y et al., Both point mutations and low expression levels of the nicotinic acetylcholine receptor beta 1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pest Biochem Physiol 141:1-8 (2017).
Wang K, Zhang M, Huang YN, Yang ZL, Su S and Chen MH, Characterisation of imidacloprid resistance in the bird cherry-oat aphid, Rhopalosiphum padi, a serious pest on wheat crops. Pest Manag Sci 74:1457-1465 (2018).
Mu W, Liu F, Jia ZM, He MH and Xiang GF, A simple and convenient rearing technique for Bradysia odoriphaga (in Chinese). Entomol J East China 12:87-89 (2003).
Livak KJ and Schmittgen TD, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402-408 (2001).
Shi CH, Yang FS, Zhu X, Du EX, Yang YT, Wang SL et al., Evaluation of housekeeping genes for quantitative real-time PCR analysis of Bradysia odoriphaga (Diptera: Sciaridae). Int J Mol Sci 17:19 (2016).
Koressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R and Remm M, Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34:1937-1938 (2018).
Shan TS, Chen CY, Ding Q, Chen XW, Zhang HH, Chen AQ et al., Molecular characterization and expression profiles of nicotinic acetylcholine receptors in Bradysia odoriphaga. Pest Biochem Physiol:104563 (2020). Available: https://doi.org/10.1016/j.pestbp.2020.104563.
Li JH, Qian J, Xu YY, Yang S, Shen J and Yin MZ, A facile-synthesized star polycation constructed as a highly efficient gene vector in pest management. ACS Sustainable Chem Eng 7:6316-6322 (2019).
Zhang P, Chen CY, Li H, Liu F and Mu W, Selective toxicity of seven neonicotinoid insecticides to fungus gnat Bradysia odoriphaga and earthworm Eisenia foetida. Acta Phyto Sin 41:79-86 (2014).
Ma XD, Xue M, Li ZX, Zhao HP and Ji GX, Toxic effects of five insect growth regulators on chive gnat Bradysia odoriphaga. J Plant Prot 2:19 (2015).
Zhang P, Zhao YH, Wang QH, Mu W and Liu F, Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Pest Biochem Physiol 136:80-88 (2017).
Shi CH, Hu JR, Wei QW, Yang YT, Cheng JX, Han HL et al., Control of Bradysia odoriphaga (Diptera: Sciaridae) by soil solarization. Crop Prot 114:76-82 (2018).
Song J, Cao WP, Chen D, Zhang X and Du LX, Effect of solarization high temperature film mulching on Chinese chive growth and soil microbial functional diversity. Chin J Biol Control 34:670-675 (2018).
Zhang YX, Wang X, Yang BJ, Hu YY, Huang LX, Bass C et al., Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper Nilaparvata lugens. J Neurochem 135:686-694 (2015).
Qu Y, Chen JH, Li CG, Wang Q, Guo WC, Han ZJ et al., The subunit gene Ld alpha 1 of nicotinic acetylcholine receptors plays important roles in the toxicity of imidacloprid and thiamethoxam against Leptinotarsa decemlineata. Pest Biochem Physiol 127:51-58 (2016).
Somers J, Luong HNB, Batterham P and Perry T, Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost? Fly 12:46-54 (2018).
Christen V, Mittner F and Fent K, Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environ Sci Technol 50:4071-4081 (2016).
Benzidane Y, Goven D, Abd-Ella AA, Deshayes C, Lapied B and Raymond V, Subchronic exposure to sublethal dose of imidacloprid changes electrophysiological properties and expression pattern of nicotinic acetylcholine receptor subtypes in insect neurosecretory cells. Neurotoxicology 62:239-247 (2017).
Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF et al., The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100:9923-9928 (2003).
Huvenne H and Smagghe G, Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227-235 (2010).
Olson KE and Blair CD, Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol 15:119-126 (2015).
Grant Information:
201303027 Special Fund for Agro-scientific Research in the Public Interest
Contributed Indexing:
Keywords: Bradysia odoriphaga; imidacloprid; nicotinic acetylcholine receptor; resistance mechanism
Substance Nomenclature:
0 (Insecticides)
0 (Neonicotinoids)
0 (Nitro Compounds)
0 (Receptors, Nicotinic)
3BN7M937V8 (imidacloprid)
Entry Date(s):
Date Created: 20200415 Date Completed: 20201221 Latest Revision: 20201221
Update Code:
20240105
DOI:
10.1002/ps.5854
PMID:
32285608
Czasopismo naukowe
Background: Neonicotinoid insecticide imidacloprid acts on insect nicotinic acetylcholine receptors (nAChRs). The mechanisms of insect resistance to imidacloprid include target-site alteration and increased detoxification metabolism. In Bradysia odoriphaga, cytochrome P450 monooxygenase has been found involved in metabolic resistance to imidacloprid. However, the situation of target-site related resistance to imidacloprid in B. odoriphaga is still unknown.
Results: Nine field-collected B. odoriphaga populations showed various sensitivities to imidacloprid compared with the susceptible (SS) strain, including susceptibility, decreased susceptibility, low resistance, moderate resistance and high resistance. Seven nAChR subunit genes including α1, α2, α3, α7, α8, β1 and β3, were examined for site mutation and changes in transcription levels in field populations. No nAChR polymorphism potentially related to the resistant phenotypes was found. However, differential expression of nAChR subunit genes was found in imidacloprid resistant field population. In high imidacloprid resistant population LC-2 (93.14-fold resistance), the transcription levels of α1, α2 and β1 subunits were significantly down-regulated, while the transcription levels of α3 and α8 subunits were significantly up-regulated, compared with that in SS strain. In addition, imidacloprid acute exposure induced differential expression of nAChR subunit genes in B. odoriphaga. Furthermore, RNA interference (RNAi) suppressed the transcriptional expression of Boα1 and Boβ1, and decreased mortality of B. odoriphaga by 23.03% and 18.69%, respectively, when treated with imidacloprid.
Conclusion: These results indicated that, although no target-site mutation was found in imidacloprid resistant B. odoriphaga population, the reduced expression of α1 and β1 subunits contributed to B. odoriphaga resistance to imidacloprid. © 2020 Society of Chemical Industry.
(© 2020 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies