Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis .

Tytuł:
Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis .
Autorzy:
Li W; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
Nguyen KH; Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str., Hanoi 100000, Vietnam.
Tran CD; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.; Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str., Hanoi 100000, Vietnam.
Watanabe Y; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
Tian C; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Yin X; State Key Laboratory of Natural Medicines, Department of Pharmacognosy, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
Li K; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.
Yang Y; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.
Guo J; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.
Miao Y; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.
Yamaguchi S; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
Tran LP; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
Źródło:
Biomolecules [Biomolecules] 2020 Apr 14; Vol. 10 (4). Date of Electronic Publication: 2020 Apr 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, 2011-
MeSH Terms:
Droughts*
Arabidopsis/*physiology
Arabidopsis Proteins/*metabolism
Co-Repressor Proteins/*metabolism
Heterocyclic Compounds, 3-Ring/*pharmacology
Lactones/*pharmacology
Abscisic Acid/pharmacology ; Anthocyanins/metabolism ; Arabidopsis/drug effects ; Arabidopsis/genetics ; Arabidopsis Proteins/genetics ; Co-Repressor Proteins/genetics ; Electrolytes/metabolism ; Gene Expression Regulation, Plant/drug effects ; Genetic Markers ; Mutation/genetics ; Oxidative Stress/drug effects ; Oxidative Stress/genetics ; Permeability ; Plant Epidermis/drug effects ; Plant Epidermis/metabolism ; Plant Leaves/drug effects ; Plant Leaves/metabolism ; Reactive Oxygen Species/metabolism ; Temperature ; Water
References:
Plant J. 2020 Feb 5;:. (PMID: 32022953)
Front Plant Sci. 2015 Jun 16;6:420. (PMID: 26136756)
Plant J. 2019 May;98(4):607-621. (PMID: 30659713)
Plant J. 2006 Feb;45(4):523-39. (PMID: 16441347)
Plant Cell Environ. 2018 Oct;41(10):2227-2243. (PMID: 29869792)
Cell Rep. 2018 Jun 26;23(13):3960-3974. (PMID: 29949777)
Front Plant Sci. 2018 Nov 23;9:1722. (PMID: 30532763)
Plant Physiol. 2016 Mar;170(3):1699-713. (PMID: 26704641)
BMC Genet. 2018 Jan 15;19(1):6. (PMID: 29334890)
Plant Cell Environ. 2012 Nov;35(11):1958-68. (PMID: 22553988)
Curr Opin Plant Biol. 2014 Oct;21:1-6. (PMID: 24981923)
Planta. 2016 Jun;243(6):1397-406. (PMID: 26754282)
Planta. 2003 Jun;217(2):290-8. (PMID: 12783337)
Plant Physiol. 2008 Sep;148(1):97-107. (PMID: 18621978)
Plant Cell. 2015 Nov;27(11):3143-59. (PMID: 26546447)
Plant Cell. 2005 Dec;17(12):3470-88. (PMID: 16284313)
Plant J. 2002 Jun;30(5):601-9. (PMID: 12047634)
Plant J. 1998 Jun;14(6):759-64. (PMID: 9681039)
Plant Physiol. 1981 Apr;67(4):780-4. (PMID: 16661754)
PLoS One. 2015 Mar 20;10(3):e0119724. (PMID: 25793732)
Plant Cell Physiol. 2009 Aug;50(8):1416-24. (PMID: 19542179)
Trends Genet. 2016 Mar;32(3):176-188. (PMID: 26851153)
Plant J. 2004 Jan;37(1):139-46. (PMID: 14675439)
Annu Rev Plant Biol. 2015;66:161-86. (PMID: 25621512)
Plant Physiol. 2017 Feb;173(2):1391-1408. (PMID: 27913741)
Int J Mol Sci. 2018 Oct 31;19(11):. (PMID: 30384475)
Plant Cell Physiol. 1999 Jul;40(7):725-32. (PMID: 10501032)
Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):657-62. (PMID: 15331095)
Plant J. 2014 Jul;79(1):13-27. (PMID: 24773321)
Plant Cell. 2014 Jul;26(7):3148-66. (PMID: 25005920)
J Exp Bot. 2018 Apr 23;69(9):2291-2303. (PMID: 29346683)
Plant Physiol. 2018 Aug;177(4):1717-1727. (PMID: 29954869)
Plant Physiol. 2014 Jan;164(1):424-39. (PMID: 24198318)
Nat Commun. 2019 Jan 14;10(1):191. (PMID: 30643123)
DNA Res. 2011 Feb;18(1):17-29. (PMID: 21208938)
Plant Cell Rep. 2019 Nov;38(11):1427-1438. (PMID: 31396684)
Biol Chem. 2000 Aug;381(8):749-53. (PMID: 11030432)
Plant J. 2014 Feb;77(3):367-79. (PMID: 24274116)
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9653-8. (PMID: 22645333)
Plant Cell. 2011 Jun;23(6):2169-83. (PMID: 21719693)
Trends Plant Sci. 2015 Sep;20(9):569-75. (PMID: 26044742)
New Phytol. 2018 Jan;217(1):290-304. (PMID: 28940201)
Plant Cell Physiol. 2017 Aug 1;58(8):1364-1377. (PMID: 28586465)
Mol Cell Proteomics. 2016 Aug;15(8):2744-55. (PMID: 27317401)
Plant Physiol. 2013 Sep;163(1):5-20. (PMID: 23893170)
Plant Cell. 2015 Nov;27(11):3128-42. (PMID: 26546446)
BMC Plant Biol. 2010 Apr 19;10:70. (PMID: 20403182)
Development. 2012 Apr;139(7):1285-95. (PMID: 22357928)
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):851-6. (PMID: 24379380)
New Phytol. 2016 Dec;212(4):954-963. (PMID: 27716937)
Sci Rep. 2017 Oct 2;7(1):12501. (PMID: 28970576)
Nature. 2016 Aug 25;536(7617):469-73. (PMID: 27479325)
Plant Physiol Biochem. 2017 Jun;115:126-140. (PMID: 28364709)
Plant Signal Behav. 2018 Mar 4;13(3):e1444322. (PMID: 29473784)
Plant Cell Environ. 2010 Apr;33(4):453-67. (PMID: 19712065)
PLoS Genet. 2017 Nov 13;13(11):e1007076. (PMID: 29131815)
Front Plant Sci. 2018 Oct 08;9:1387. (PMID: 30349547)
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403. (PMID: 15012294)
Planta. 2015 Jun;241(6):1435-51. (PMID: 25716094)
Development. 2002 Mar;129(5):1131-41. (PMID: 11874909)
Naturwissenschaften. 2007 Oct;94(10):791-812. (PMID: 17479232)
PLoS Genet. 2019 Aug 29;15(8):e1008327. (PMID: 31465451)
Grant Information:
#2018YFE0194000 International National Key R&D Programme (NKP) from Ministry of Science and Technology of the People's Republic of China; #17K07459 International Japan Society for the Promotion of Science
Contributed Indexing:
Keywords: SMXL; abscisic acid; drought resistance; strigolactone
Substance Nomenclature:
0 (AT2G29970 protein, Arabidopsis)
0 (AT2G40130 protein, Arabidopsis)
0 (Anthocyanins)
0 (Arabidopsis Proteins)
0 (Co-Repressor Proteins)
0 (Electrolytes)
0 (GR24 strigolactone)
0 (Genetic Markers)
0 (Heterocyclic Compounds, 3-Ring)
0 (Lactones)
0 (Reactive Oxygen Species)
059QF0KO0R (Water)
72S9A8J5GW (Abscisic Acid)
Entry Date(s):
Date Created: 20200417 Date Completed: 20210405 Latest Revision: 20210507
Update Code:
20240104
PubMed Central ID:
PMC7226073
DOI:
10.3390/biom10040607
PMID:
32295207
Czasopismo naukowe
Previous investigations have shown that the SUPPRESSORS OF MAX2 1-LIKE6, 7 and 8 (SMXL6, 7 and 8) proteins redundantly repress strigolactone (SL) signaling in plant growth and development. Recently, a growing body of evidence indicated that SLs positively regulate plant drought resistance through functional analyses of genes involved in SL biosynthesis and positive regulation of SL signaling. However, the functions of the SL-signaling negative regulators SMXL6, 7 and 8 in drought resistance and the associated mechanisms remain elusive. To reveal the functions of these SMXL proteins, we analyzed the drought-resistant phenotype of the triple smxl6 , 7 , 8 mutant plants and studied several drought resistance-related traits. Our results showed that the smxl6 , 7 , 8 mutant plants were more resistant to drought than wild-type plants. Physiological investigations indicated that the smxl6 , 7 , 8 mutant plants exhibited higher leaf surface temperature, reduced cuticle permeability, as well as decreases in drought-induced water loss and cell membrane damage in comparison with wild-type plants. Additionally, smxl6 , 7 , 8 mutant plants displayed an increase in anthocyanin biosynthesis during drought, enhanced detoxification capacity and increased sensitivity to abscisic acid in cotyledon opening and growth inhibition assays. A good correlation between the expression levels of some relevant genes and the examined physiological and biochemical traits was observed. Our findings together indicate that the SMXL6, 7 and 8 act as negative regulators of drought resistance, and that disruption of these SMXL genes in crops may provide a novel way to improve their drought resistance.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies