Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Multiplex secretome engineering enhances recombinant protein production and purity.

Tytuł:
Multiplex secretome engineering enhances recombinant protein production and purity.
Autorzy:
Kol S; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark. .
Ley D; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Wulff T; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Decker M; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Arnsdorf J; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Schoffelen S; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Hansen AH; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Jensen TL; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Gutierrez JM; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.; Department of Bioengineering, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
Chiang AWT; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
Masson HO; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.; Department of Bioengineering, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
Palsson BO; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.; Department of Bioengineering, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
Voldborg BG; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Pedersen LE; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Kildegaard HF; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Lee GM; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.; Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
Lewis NE; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA. .; Department of Bioengineering, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA. .; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA. .
Źródło:
Nature communications [Nat Commun] 2020 Apr 20; Vol. 11 (1), pp. 1908. Date of Electronic Publication: 2020 Apr 20.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Metabolic Engineering/*methods
Recombinant Proteins/*biosynthesis
Animals ; Antibodies, Monoclonal/biosynthesis ; Antibodies, Monoclonal/isolation & purification ; Biological Products ; CHO Cells ; Chromatography ; Cricetulus ; Gene Knockout Techniques ; High-Throughput Nucleotide Sequencing ; Recombinant Proteins/genetics ; Recombinant Proteins/isolation & purification ; Rituximab ; Synthetic Biology
References:
Chiu, J. et al. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol. Bioeng.114, 1006–1015 (2017). (PMID: 2794324210.1002/bit.26237)
Laux, H. et al. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout. Biotechnol. Bioeng.115, 2530–2540 (2018). (PMID: 2977759310.1002/bit.26731)
Wang, X., Hunter, A. K. & Mozier, N. M. Host cell proteins in biologics development: Identification, quantitation and risk assessment. Biotechnol. Bioeng.103, 446–458 (2009). (PMID: 1938813510.1002/bit.22304)
Guiochon, G. & Beaver, L. A. Separation science is the key to successful biopharmaceuticals. J. Chromatogr. A1218, 8836–8858 (2011). (PMID: 2198244710.1016/j.chroma.2011.09.008)
Shukla, A. A. & Thömmes, J. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol.28, 253–261 (2010). (PMID: 2030451110.1016/j.tibtech.2010.02.001)
Goey, C. H., Alhuthali, S. & Kontoravdi, C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol. Adv.36, 1223–1237 (2018). (PMID: 2965490310.1016/j.biotechadv.2018.03.021)
Fischer, S. K. et al. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in lebrikizumab clinical material. AAPS J.19, 254–263 (2017). (PMID: 2773901010.1208/s12248-016-9998-7)
Zhu-Shimoni, J. et al. Host cell protein testing by ELISAs and the use of orthogonal methods. Biotechnol. Bioeng.111, 2367–2379 (2014). (PMID: 2499596110.1002/bit.25327)
Kumar, A. et al. Elucidation of the CHO Super-Ome (CHO-SO) by proteoinformatics. J. Proteome Res.14, 4687–4703 (2015). (PMID: 26418914472157110.1021/acs.jproteome.5b00588)
Valente, K. N., Levy, N. E., Lee, K. H. & Lenhoff, A. M. Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing. Curr. Opin. Biotechnol.53, 144–150 (2018). (PMID: 2941407210.1016/j.copbio.2018.01.004)
Li, S. W. et al. Identification and CRISPR/Cas9 inactivation of the C1s protease responsible for proteolysis of recombinant proteins produced in CHO cells. Biotechnol. Bioeng.116, 2130–2145 (2019). (PMID: 3108756010.1002/bit.270166675663)
Fukuda, N., Senga, Y. & Honda, S. Anxa2- and Ctsd-knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnol. Prog.35, e2820 (2019). (PMID: 3097297010.1002/btpr.2820)
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). (PMID: 23287718379541110.1126/science.1231143)
Grav, L. M. et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol. J.10, 1446–1456 (2015). (PMID: 2586457410.1002/biot.201500027)
Yamane-Ohnuki, N. et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng.87, 614–622 (2004). (PMID: 1535205910.1002/bit.20151)
Tejwani, V., Andersen, M. R., Nam, J. H. & Sharfstein, S. T. Glycoengineering in CHO cells: advances in systems biology. Biotechnol. J.13, 1700234 (2018). (PMID: 10.1002/biot.201700234)
Tian, W. et al. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat. Commun. 10, 1785 (2019).
Karottki, K. J. & la, C. et al. Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnol. Bioeng.117, 593–598 (2020). (PMID: 3163131710.1002/bit.27199)
Cost, G. J. et al. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol. Bioeng.105, 330–340 (2010). (PMID: 1977758010.1002/bit.22541)
Mascarenhas, J. X. et al. Genetic engineering of CHO cells for viral resistance to minute virus of mice. Biotechnol. Bioeng.114, 576–588 (2017). (PMID: 2764207210.1002/bit.26186)
Chiang, A. W. T. et al. Combating viral contaminants in CHO cells by engineering innate immunity. Sci. Rep. 9, 8827 (2019).
Duroy, P. et al. Characterization and mutagenesis of Chinese hamster ovary cells endogenous retroviruses to inactivate viral particle release. Biotechnol. Bioeng.117, 466–485 (2020). (PMID: 3163132510.1002/bit.27200)
Ritter, A. et al. Fam60A plays a role for production stabilities of recombinant CHO cell lines. Biotechnol. Bioeng.114, 701–704 (2017). (PMID: 2761790410.1002/bit.26181)
Gutierrez, J. M. et al. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat. Commun.11, 68 (2020). (PMID: 31896772694035810.1038/s41467-019-13867-y)
Hefzi, H. et al. A Consensus genome-scale reconstruction of chinese hamster ovary cell metabolism. Cell Syst.3, 434–443.e8 (2016). (PMID: 27883890513234610.1016/j.cels.2016.10.020)
Levy, N. E., Valente, K. N., Choe, L. H., Lee, K. H. & Lenhoff, A. M. Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing. Biotechnol. Bioeng.111, 904–912 (2014). (PMID: 2425431810.1002/bit.25158)
Valente, K. N., Lenhoff, A. M. & Lee, K. H. Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Biotechnol. Bioeng.112, 1232–1242 (2015). (PMID: 2550254210.1002/bit.25515)
Levy, N. E., Valente, K. N., Lee, K. H. & Lenhoff, A. M. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol. Bioeng.113, 1260–1272 (2016). (PMID: 2655077810.1002/bit.25882)
Chiverton, L. M. et al. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnol. J.11, 1014–1024 (2016). (PMID: 27214759503120110.1002/biot.201500550)
Bee, J. S. et al. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnol. Prog.31, 1360–1369 (2015). (PMID: 2625996110.1002/btpr.2150)
Park, J. H. et al. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Biotechnol. Bioeng.114, 2267–2278 (2017). (PMID: 2862772510.1002/bit.26360)
Cheung, M. C. et al. Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping. Cytometry A83, 540–551 (2013). (PMID: 2350482210.1002/cyto.a.22277)
Sola, R. J. & Griebenow, K. Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci.98, 1223–1245 (2009). (PMID: 18661536264997710.1002/jps.21504)
del Val, I. J., Kontoravdi, C. & Nagy, J. M. Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns. Biotechnol. Prog.26, 1505–1527 (2010). (PMID: 2066565910.1002/btpr.470)
Gottschalk, U. Bioseparation in antibody manufacturing: the good, the bad and the Ugly. Biotechnol. Prog.24, 496–503 (2008). (PMID: 1844225510.1021/bp070452g)
Milne, J. J. Scale-Up of protein purification: downstream processing issues. Methods Mol. Biol1485, 71–84 (2017). (PMID: 2773054910.1007/978-1-4939-6412-3_5)
Singh, N. & Herzer, S. in Advances in Biochemical Engineering/Biotechnology, Vol. 165, p. 115–178 (Springer, Cham, 2018).
Hogwood, C. E., Bracewell, D. G. & Smales, C. M. Host cell protein dynamics in recombinant CHO cells. Bioengineered4, 288–291 (2013). (PMID: 23328085381352810.4161/bioe.23382)
Kallehauge, T. B. et al. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion. Sci. Rep.7, 40388 (2017). (PMID: 28091612523844810.1038/srep40388)
Bojar, D., Fuhrer, T. & Fussenegger, M. Purity by design: reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab. Eng.52, 110–123 (2019). (PMID: 3046887410.1016/j.ymben.2018.11.007)
Liu, H. F., Ma, J., Winter, C. & Bayer, R. Recovery and purification process development for monoclonal antibody production. MAbs2, 480–499 (2010). (PMID: 20647768295857010.4161/mabs.2.5.12645)
Kuo, C. C. et al. The emerging role of systems biology for engineering protein production in CHO cells. Curr. Opin. Biotechnol.51, 64–69 (2018). (PMID: 2922300510.1016/j.copbio.2017.11.015)
Li, S. et al. Proteogenomic annotation of chinese hamsters reveals extensive novel translation events and endogenous retroviral elements. J. Proteome Res.18, 2433–2445 (2019). (PMID: 31020842657112010.1021/acs.jproteome.8b00935)
Pristovšek, N. et al. Using titer and titer normalized to confluence are complementary strategies for obtaining chinese hamster ovary cell lines with high volumetric productivity of etanercept. Biotechnol. J.13, 1700216 (2018). (PMID: 10.1002/biot.201700216)
Hiller, K., Grote, A., Scheer, M., Munch, R. & Jahn, D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res.32, W375–W379 (2004). (PMID: 1521541444151610.1093/nar/gkh378)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics31, 166–169 (2015). (PMID: 2526070010.1093/bioinformatics/btu638)
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102, 15545–15550 (2005). (PMID: 16199517123989610.1073/pnas.0506580102)
Grant Information:
R35 GM119850 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (Antibodies, Monoclonal)
0 (Biological Products)
0 (Recombinant Proteins)
4F4X42SYQ6 (Rituximab)
Entry Date(s):
Date Created: 20200422 Date Completed: 20200804 Latest Revision: 20220422
Update Code:
20240105
PubMed Central ID:
PMC7170862
DOI:
10.1038/s41467-020-15866-w
PMID:
32313013
Czasopismo naukowe
Host cell proteins (HCPs) are process-related impurities generated during biotherapeutic protein production. HCPs can be problematic if they pose a significant metabolic demand, degrade product quality, or contaminate the final product. Here, we present an effort to create a "clean" Chinese hamster ovary (CHO) cell by disrupting multiple genes to eliminate HCPs. Using a model of CHO cell protein secretion, we predict that the elimination of unnecessary HCPs could have a non-negligible impact on protein production. We analyze the HCP content of 6-protein, 11-protein, and 14-protein knockout clones. These cell lines exhibit a substantial reduction in total HCP content (40%-70%). We also observe higher productivity and improved growth characteristics in specific clones. The reduced HCP content facilitates purification of a monoclonal antibody. Thus, substantial improvements can be made in protein titer and purity through large-scale HCP deletion, providing an avenue to increased quality and affordability of high-value biopharmaceuticals.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies