Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Egypt's Coastal Vulnerability to Sea-Level Rise and Storm Surge: Present and Future Conditions.

Tytuł:
Egypt's Coastal Vulnerability to Sea-Level Rise and Storm Surge: Present and Future Conditions.
Autorzy:
Torresan S; Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy.; Department of Environmental Sciences, Risk Assessment and Adaptation Strategies Division, Informatics and Statistics, University Ca' Foscari Venice, Italy.
Furlan E; Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy.; Department of Environmental Sciences, Risk Assessment and Adaptation Strategies Division, Informatics and Statistics, University Ca' Foscari Venice, Italy.
Critto A; Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy.; Department of Environmental Sciences, Risk Assessment and Adaptation Strategies Division, Informatics and Statistics, University Ca' Foscari Venice, Italy.
Michetti M; Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy.; Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Division Models and Technologies for Risk Reduction, Centro Ricerche Ezio Clementel, Bologna, Italy.
Marcomini A; Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy.; Department of Environmental Sciences, Risk Assessment and Adaptation Strategies Division, Informatics and Statistics, University Ca' Foscari Venice, Italy.
Źródło:
Integrated environmental assessment and management [Integr Environ Assess Manag] 2020 Sep; Vol. 16 (5), pp. 761-772. Date of Electronic Publication: 2020 Jun 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Pensacola, FL : Society of Environmental Toxicology and Chemistry (SETAC), c2005-
MeSH Terms:
Climate Change*
Sea Level Rise*
Egypt ; Floods
References:
Abdrabo M, Hassaan M. 2014. F2: Filling data gaps to address flooding in coastal cities. In: Proceedings of the Resilient Cities 2014 Congress Session, 5th Global Forum on Urban Resilience; 2014 May 29-31; Bonn, Germany. Vol. 1, 22 p.
Appelquist LR. 2013. Generic framework for mesoscale assessment of climate change hazards in coastal environments. J Coast Conserv 17(1):59-74.
Aymen AS, Mamdouh MEH, Rifai IR, Waleed MTF. 2014. An integrated web mapping solution to assess the effect of SLR on the Northern Coast of Egypt-EGSLR. In: Bandrova T, Konecny M, Zlatanova S, editors. Thematic cartography for the society. Lecture notes in geoinformation and cartography. Cham (CH): Springer. p 23-31.
Batisha AF. 2012. Adaptation of sea level rise in Nile Delta due to climate change. J Earth Sci Clim Change 3:114.
Cavicchia L, Scoccimarro E, Gualdi S, Marson P, Ahrens B, Berthou S, Conte D, Dell'Aquila A, Drobinski P, Djurdjevic V et al. 2018. Mediterranean extreme precipitation: A multi-model assessment. Clim Dyn 51:901-913. https://doi.org/10.1007/s00382-016-3245-x.
Council of the European Union. 2009. Protocol on integrated coastal zone management in the Mediterranean. OJ L 34, 4.2.2009. p 19-28.
Dasgupta S, Laplante B, Murray S, Wheeler D. 2007. Sea-level rise and storm surges: A comparative analysis of impacts in developing countries. Washington (DC): World Bank Group. Policy Research Working Paper WPS4901. 43 p.
Dismukes DE, Narra S. 2016. Identifying the vulnerabilities of working coasts supporting critical energy infrastructure. Water 8(1). https://doi.org/10.3390/w8010008.
El-Hattab MM. 2015. Improving coastal vulnerability index of the Nile Delta Coastal Zone, Egypt. J Earth Sci Clim Change 6(8):293.
Eldeberky Y. 2011. Coastal adaptation to sea level rise along the Nile delta, Egypt. WIT Trans Ecol Environ 149:41-52. https://doi.org/10.2495/CP110041.
Elhag M, Psilovikos A, Sakellariou-Makrantonaki M. 2013. Land use changes and its impacts on water resources in Nile Delta region using remote sensing techniques. Environ Dev Sustain 15:1189-1204. https://doi.org/10.1007/s10668-013-9433-5.
Elsharkawy H, Rashed H, Rached I. 2009. Climate change: The impacts of sea level rise on Egypt. In: 45th ISOCARP Congress Report; 2009 Oct 18-22; Porto, Portugal. 12 p.
[ETC/ACC] European Topic Centre on Air and Climate Change. 2010. European coastal climate change impacts, vulnerability and adaptation: A review of evidence. Copenhagen (DK). ETC/ACC Technical Paper 2010/7. 174 p. https://climate-adapt.eea.europa.eu/metadata/publications/european-coastal-climate-change-impacts-vulnerability-and-adaptation-a-review-of-evidence-etc-acc-technical-paper-2010-7.
Frihy OE. 2003. The Nile Delta-Alexandria coast: Vulnerability to sea level rise, consequences and adaptation. Mitig Adapt Strat Gl 8:115-138.
Gallina V, Torresan S, Zabeo A, Rizzi J, Carniel S, Sclavo M, Pizzol L, Marcomini A, Critto A. 2019. Assessment of climate change impacts in the North Adriatic coastal area. Part II: Consequences for coastal erosion impacts at the regional scale. Water (Switzerland) 11:1-20. https://doi.org/10.3390/w11061300.
Giorgi F. 2006. Climate change hot-spots. Geophys Res Lett 33(8):1-4. https://doi.org/10.1029/2006GL025734.
Gornitz V, White TW, Cushman RM. 1991. Vulnerability of the US to future sea-level rise. In: Coastal zone 91. Proceedings of the 7th Symposium on Coastal and Ocean Management; 1991 Jul 8-12; Long Beach, California. Washington (DC): USDOE. p 2354-2368.
Gornitz VM, Daniels RC, White TW, Birdwell KR. 1994. The development of coastal risk assessment database: Vulnerability to sea-level rise in the US southeast. J Coast Res 12:327-338.
Hagen SC, Passeri DL, Bilskie MV, DeLorme DE, Yoskowitz D. 2017. Systems approaches for coastal hazard assessment and resilience. In: Oxford research encyclopedia of natural hazard science. Oxford (UK): Oxford Univ. 25 p.
Haggag M, El-Shazly A, Rakh K. 2013. Impact of sea level rise on the Nile delta, Egypt. J Eng Appl Sci 60:211-230.
Hereher M. 2010. Vulnerability of the Nile Delta to sea level rise: An assessment using remote sensing. Geomat Nat Haz Risk 1(4):315-321. https://doi.org/10.1080/19475705.2010.516912.
Hereher M. 2015. Coastal vulnerability assessment for Egypt's Mediterranean coast. Geomat Nat Haz Risk 6(4):342-355.
Hoque MAA, Ahmed N, Pradhan B, Roy S. 2019. Assessment of coastal vulnerability to multi-hazardous events using geospatial techniques along the eastern coast of Bangladesh. Ocean Coast Manage 181:104898. https://doi.org/10.1016/j.ocecoaman.2019.104898.
[IPCC] International Panel on Climate Change. 2007. AR4 Climate change 2007: The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge Univ. 996 p.
[IPCC] International Panel on Climate Change. 2013. Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, editors. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge Univ. p 1-30. https://doi.org/10.1017/CBO9781107415324.Summary.
[IPCC] International Panel on Climate Change. 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, editors. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge Univ. 1150 p.
[IPCC] International Panel on Climate Change. 2019. Technical summary. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Poloczanska E, Mintenbeck K, Tignor M, Alegría A, Nicolai M, Okem A et al. editors. IPCC special report on the ocean and cryosphere in a changing climate. Cambridge (UK): Cambridge Univ. 34 p. https://www.ipcc.ch/srocc/.
Kantamaneni K, Phillips M, Thomas T, Jenkins R. 2018. Assessing coastal vulnerability: Development of a combined physical and economic index. Ocean Coast Manage 158:164-175. https://doi.org/10.1016/j.ocecoaman.2018.03.039.
King D, Macgregor C. 2000. Using social indicators to measure community vulnerability to natural hazards. Aust J Emerg Manage 15(3):52-57.
Koroglu A, Ranasinghe R, Jiménez JA, Dastgheib A. 2019. Comparison of coastal vulnerability index applications for Barcelona Province. Ocean Coast Manage 178:104799. https://doi.org/10.1016/j.ocecoaman.2019.05.001.
Kulp SA, Strauss BH. 2019. Vulnerability to sea-level rise and coastal flooding. Nat Commun 10:4844. https://doi.org/10.1038/s41467-019-12808-z.
Kumar T, Mahendra RS, Naak S, Radhakrishnan K, Sahul KC. 2010. Coastal vulnerability assessment for Orissa state, east coast of India. J Coast Res 26:523-534.
Kunte PD, Jauhari N, Mehrotra U, Kotha M, Hursthouse AS, Gagnon AS. 2014. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques. Ocean Coast Manage 95:264-281.
Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, Maayar MEl, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E et al. 2012. Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change 114:667-687. https://doi.org/10.1007/s10584-012-0418-4.
Liberti L, Carillo A, Sannino G. 2013. Wave energy resource assessment in the Mediterranean, the Italian perspective. Renew Energy 50:938-949. https://doi.org/10.1016/j.renene.2012.08.023.
Lionello P, Malanotte-Rizzoli P, Boscolo R, editors. 2006. Mediterranean climate variability. Amsterdam (NL): Elsevier. 438 p.
Liu H, Behr JG, Diaz R. 2015. Population vulnerability to storm surge flooding in coastal Virginia, USA. Integr Environ Assess Manag 12(3):500-509. https://doi.org/10.1002/ieam.1705.
Marignani M, Bruschi D, Garcia DA, Frondoni R, Carli E, Pinna MS, Cumo F, Gugliermetti F, Saatkamp A, Doxa A. 2017. Identification and prioritization of areas with high environmental risk in Mediterranean coastal areas: A flexible approach. Sci Total Environ 590:566-578.
Mariner N, Flaux C, Morhange C, Kaniewski D. 2012. Nile Delta's sinking past: Quantitative links with holocene compaction and climate-driven changes in sediment supply. Geology 40:1083-1086.
McLaughlin S, Cooper JAG. 2010. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ Hazards 9(3):233-248.
Murali RM, Ankita M, Amrita S, Vethamony P. 2013. Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Nat Hazard Earth Syst 13:3291-3311.
Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ. 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding-A global assessment. PLoS One 10(3):e0118571. https://doi.org/10.1371/journal.pone.0118571.
Nicholls RJ, Wong PP, Burkett V, Woodroffe CD. 2008. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment. Sustain Sci 3:89-102.
Özyurt G, Ergin A. 2010. Improving coastal vulnerability assessments to sea-level rise: A new indicator-based methodology for decision makers. J Coast Res 26:265-273.
Özyurt G, Ergin A, Baykal C. 2010. Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process. Proc Coast Eng Conf 32. https://doi.org/10.9753/icce.v32.management.6.
Passeri DL, Hagen SC, Irish JL. 2014. Comparison of shoreline change rates along the South Atlantic Bight and northern Gulf of Mexico coasts for better evaluation of future shoreline positions under sea level rise. J Coast Res 68:20-26.
Passeri DL, Hagen SC, Medeiros SC, Bilskie MV, Alizad K, Wang D. 2015. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth's Future 3(6):159-181.
Pendleton EA, Hammar-Klose ES, Thieler ER, Williams SJ. 2004. Coastal vulnerability assessment of Olympic National Park to sea-level rise. U.S. Geological Survey Open-File Report 04-1021, Electronic Book. 22 p.
Pendleton EA, Thieler ER, Jeffress SW. 2005. Coastal vulnerability assessment of golden gate national recreation area to sea-level rise. Reston (VA): United States Geological Survey. Open-File Report 2005-1058. 27 p.
Preston BL, Smith TF, Brooke C, Gorddard R, Measham TG, Withycombe G, McInnes K, Abbs D, Beveridge B, Morrison C. 2008. Mapping climate change vulnerability in the Sydney Coastal Group. Prepared for the Sydney Coastal Councils Group by the CSIRO Climate Adaptation Flagship. 124 p.
Ramieri E, Hartley A, Barbanti A, Duarte Santos F, Gomes A, Hilden M, Laihonen P, Marinova N, Santini M. 2011. Methods for assessing coastal vulnerability to climate change. ETC CCA Technical Paper 1/2011. 93 p.
Reddy SMW, Guannel G, Griffin R, Faries J, Boucher T, Thompson M, Brenner J, Bernhardt J, Verutes G et al. 2015. Evaluating the role of coastal habitats and sea-level rise in hurricane risk mitigation: An ecological economic assessment method and application to a business decision. Integr Environ Assess Manag 12:328-344. https://doi.org/10.1002/ieam.1678.
Reimann L, Vafeidis AT, Brown S, Hinkel J, Tol RSJ. 2018. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat Commun 9:1-11.
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G. 2011. RCP 8.5-A scenario of comparatively high 95 greenhouse gas emissions. Clim Change 109:33-57. https://doi.org/10.1007/s10584-011-0149-y.
Ronco P, Gallina V, Torresan S, Zabeo A, Semenzin E, Critto A, Marcomini A. 2014. The KULTURisk Regional Risk Assessment methodology for water-related natural hazards-Part 1: Physical-environmental assessment. Hydrol Earth Syst Sci 18:5399-5414. https://doi.org/10.5194/hess-18-5399-2014.
Satta A, Puddu M, Venturini S, Giupponi C. 2017. Assessment of coastal risks to climate change related impacts at the regional scale: The case of the Mediterranean region. Int J Disast Risk Reduct 24:284-296.
Satta A, Snoussi M, Puddu M, Flayou L, Hout R. 2016. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan. Estuarine Coastal Shelf Sci. https://doi.org/10.1016/j.ecss.2016.03.021.
Schleupner C. 2005. Spatial analysis as tool for sensitivity assessment of sea level rise impacts on Martinique. Research Unit Sustainability and Global Change Working paper. Hamburg (DE): Hamburg Univ. 71 p.
Serafim MB, Siegle E, Corsi AC, Bonetti J. 2019. Coastal vulnerability to wave impacts using a multi-criteria index: Santa Catarina (Brazil). J Environ Manage 230:21-32. https://doi.org/10.1016/j.jenvman.2018.09.052.
Taramelli A, Valentini E, Sterlacchini S. 2015. A GIS-based approach for hurricane hazard and vulnerability assessment in the Cayman Islands. Ocean Coast Manage 108:116-130.
Thieler ER, Hammar-Klose ES. 1999. National assessment of coastal vulnerability to future sea level rise: Preliminary results for the U.S. Atlantic coasts. Woods Hole (MA): US Geological Survey. Open-File Report 99-593. [accessed 2020 May 22]. http://pubs.usgs.gov/of/1999/of99-593/.
Torresan S, Critto A, Rizzi J, Zabeo A, Furlan E, Marcomini A. 2016. DESYCO: A decision support system for the regional risk assessment of climate change impacts in coastal zones. Ocean Coast Manag 120:49-63.
Tragaki A, Gallousi C, Karymbalis E. 2018. Coastal hazard vulnerability assessment based on geomorphic, oceanographic and demographic parameters: The case of the Peloponnese (Southern Greece). Land 7:56.
[UNDP] United Nations Development Programme. 2011. Egypt's national strategy for adaptation to climate change and disaster risk reduction. Egypt Government. 167 p. [accessed 2020 May 22]. https://www.preventionweb.net/english/professional/policies/v.php?id=60016.
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T. 2011. The representative concentration pathways: An overview. Climatic Change 109:5-31.
Vousdoukas M, Voukouvalas E, Annunziato A, Giardino A, Feyen L. 2016. Projections of extreme storm surge levels along Europe. Clim Dynam 47:3171-3190.
Wade T, Sommer S. 2006. A to Z GIS: An illustrated dictionary of Geographic Information Systems. Redlands (CA): ESRI Press. 268 p.
Contributed Indexing:
Keywords: Climate change adaptation; Climate impacts; Coastal vulnerability index; Integrated coastal zone management; Sea-level rise and storm surge flooding
Entry Date(s):
Date Created: 20200423 Date Completed: 20210125 Latest Revision: 20210125
Update Code:
20240105
DOI:
10.1002/ieam.4280
PMID:
32320132
Czasopismo naukowe
We assess the relative vulnerability of the Mediterranean shoreline of Egypt (about 1000 km in length) to climate change (i.e., sea-level rise [SLR], storm surge flooding, and coastal erosion) by using a Climate-improved Coastal Vulnerability Index (CCVI). We integrate information relative to a multidimensional set of physical, geological, and socioeconomic variables, and add to the mainstream literature the consideration of both a reference and a climate change scenario, assuming the representative concentration pathway 8.5 W/m 2 (RCP8.5) for the 21st century in the Mediterranean region. Results report that approximately 1% (~43 km²) of the mapped shoreline is classifiable as having a high or very high vulnerability, whereas approximately 80% (4652 km²) shows very low vulnerability. As expected, exposure to inundation and erosion is especially relevant in highly developed and urbanized coastal areas. Along the shoreline, while the Nile Delta region is the most prone area to coastal erosion and permanent or occasional inundations (both in the reference and in the climate scenario), results show the Western Desert area to be less vulnerable due to its geological characteristics (i.e., rocky and cliffed coasts, steeper coastal slope). The application of the CCVI to the coast of Egypt can be considered as a first screening of the hot-spot risk areas at the national scale. The results of the analysis, including vulnerability maps and indicators, can be used to support the development of climate adaptation and integrated coastal zone management strategies. Integr Environ Assess Manag 2020;16:761-772. © 2020 SETAC.
(© 2020 SETAC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies