Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Calcium silicate cement interface with restorative materials through layering after different time intervals.

Tytuł:
Calcium silicate cement interface with restorative materials through layering after different time intervals.
Autorzy:
Bolhari B; Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.; Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Ashofteh Yazdi K; Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Abbasi M; Department of Operative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Sanjari S; Private Practice, Tehran, Iran.
Meraji N; Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. meraji_.
Özcan M; Division of Dental Biomaterials, Center for Dental and Oral Medicine, Clinic for Reconstructive Dentistry, University of Zürich, Zürich, Switzerland.
Źródło:
Odontology [Odontology] 2021 Jan; Vol. 109 (1), pp. 210-221. Date of Electronic Publication: 2020 Apr 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Tokyo : Springer-Verlag Tokyo, c2001-
MeSH Terms:
Calcium*
Silicate Cement*
Calcium Compounds ; Drug Combinations ; Glass Ionomer Cements ; Materials Testing ; Silicates
References:
Shahriari S, Faramarzi F, Alikhani MY, Farhadian M, Hendi SS. Apical sealing ability of mineral trioxide aggregate, intermediate restorative material and calcium enriched mixture cement: a bacterial leakage study. Iran Endod J. 2016;11:336–40. (PMID: 277902675069914)
Kim JR, Nosrat A, Fouad AF. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent. 2015;43:241–7. (PMID: 10.1016/j.jdent.2014.11.004)
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21:349–53. (PMID: 10.1016/S0099-2399(06)80967-2)
Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Alvarez-Muro T, Lozano A, et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J. 2017;50(Suppl 2):e19–e30. (PMID: 10.1111/iej.12751)
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36:400–13. (PMID: 10.1016/j.joen.2009.09.009)
Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater. 2008;24:149–64. (PMID: 10.1016/j.dental.2007.04.007)
Mohebbi P, Tour Savadkouhi S. Tooth discoloration induced by calcium-silicate based materials: a literature review. Miner Stomatol. 2016 (epub ahead of print).
Marconyak LJ Jr, Kirkpatrick TC, Roberts HW, Roberts MD, Aparicio A, Himel VT, et al. A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod. 2016;42:470–3. (PMID: 10.1016/j.joen.2015.10.013)
Kohli MR, Yamaguchi M, Setzer FC, Karabucak B. Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials. J Endod. 2015;41:1862–6. (PMID: 10.1016/j.joen.2015.07.003)
Nosrat A, Nekoofar MH, Bolhari B, Dummer PM. Unintentional extrusion of mineral trioxide aggregate: a report of three cases. Int Endod J. 2012;45:1165–76. (PMID: 10.1111/j.1365-2591.2012.02082.x)
Camilleri J. Scanning electron microscopic evaluation of the material interface of adjacent layers of dental materials. Dent Mater. 2011;27:870–8. (PMID: 10.1016/j.dental.2011.04.013)
Eid AA, Komabayashi T, Watanabe E, Shiraishi T, Watanabe I. Characterization of the mineral trioxide aggregate-resin modified glass ionomer cement interface in different setting conditions. J Endod. 2012;38:1126–9. (PMID: 10.1016/j.joen.2012.04.013)
Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich Ding PG, Wolff D, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod. 2010;36:806–13. (PMID: 10.1016/j.joen.2010.02.024)
Mente J, Hufnagel S, Leo M, Michel A, Gehrig H, Panagidis D, et al. Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long-term results. J Endod. 2014;40:1746–51. (PMID: 10.1016/j.joen.2014.07.019)
Hilton TJ. Keys to clinical success with pulp capping: a review of the literature. Oper Dent. 2009;34:615–25. (PMID: 10.2341/09-132-0)
Kayahan MB, Nekoofar MH, Kazandag M, Canpolat C, Malkondu O, Kaptan F, et al. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J. 2009;42:1004–14. (PMID: 10.1111/j.1365-2591.2009.01610.x)
Kayahan MB, Nekoofar MH, McCann A, Sunay H, Kaptan RF, Meraji N, et al. Effect of acid etching procedures on the compressive strength of 4 calcium silicate-based endodontic cements. J Endod. 2013;39:1646–8. (PMID: 10.1016/j.joen.2013.09.008)
Nandini S, Ballal S, Kandaswamy D. Influence of glass-ionomer cement on the interface and setting reaction of mineral trioxide aggregate when used as a furcal repair material using laser Raman spectroscopic analysis. J Endod. 2007;33:167–72. (PMID: 10.1016/j.joen.2006.10.010)
Meraji N, Camilleri J. Bonding over dentin replacement materials. J Endod. 2017;43:1343–9. (PMID: 10.1016/j.joen.2017.03.025)
Tulumbaci F, Almaz ME, Arikan V, Mutluay MS. Shear bond strength of different restorative materials to mineral trioxide aggregate and Biodentine. J Conserv Dent JCD. 2017;20:292–6. (PMID: 10.4103/JCD.JCD_97_17)
Altunsoy M, Tanriver M, Ok E, Kucukyilmaz E. Shear bond strength of a self-adhering flowable composite and a flowable base composite to mineral trioxide aggregate, calcium-enriched mixture cement, and Biodentine. J Endod. 2015;41:1691–5. (PMID: 10.1016/j.joen.2015.06.013)
Al-Sarheed MA. Evaluation of shear bond strength and SEM observation of all-in-one self-etching primer used for bonding of fissure sealants. J Contemp Dent Pract. 2006;7:9–16. (PMID: 10.5005/jcdp-7-2-9)
Davidson CL, de Gee AJ, Feilzer A. The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res. 1984;63:1396–9. (PMID: 10.1177/00220345840630121101)
Grazziotin-Soares R, Nekoofar MH, Davies T, Hubler R, Meraji N, Dummer PMH. Crystalline phases involved in the hydration of calcium silicate-based cements: semi-quantitative Rietveld X-ray diffraction analysis. Austr Endod J. 2017.
Nekoofar MH, Oloomi K, Sheykhrezae MS, Tabor R, Stone DF, Dummer PM. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J. 2010;43:849–58. (PMID: 10.1111/j.1365-2591.2010.01750.x)
Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials. 2004;25:787–93. (PMID: 10.1016/S0142-9612(03)00591-X)
Bolhari B, Nekoofar MH, Sharifian M, Ghabrai S, Meraji N, Dummer PM. Acid and microhardness of mineral trioxide aggregate and mineral trioxide aggregate-like materials. J Endod. 2014;40:432–5. (PMID: 10.1016/j.joen.2013.10.014)
Ashofteh Yazdi K, Ghabraei S, Bolhari B, Kafili M, Meraji N, Nekoofar MH, et al. Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions. Clin Oral Investig. 2018.
Mount GJ, Makinson OF. Glass-ionomer restorative cements: clinical implications of the setting reaction. Oper Dent. 1982;7:134–41. (PMID: 6963633)
Pham CL, Kratunova E, Marion I, da Fonseca MA, Alapati SB. Effect of overlying material on final setting of Biodentine (R) in primary molar pulpotomies. Pediatr Dent. 2019;41:140–5. (PMID: 30992113)
Woolford MJ. The surface pH of glass ionomer cavity lining agents. J Dent. 1989;17:295–300. (PMID: 10.1016/0300-5712(89)90044-4)
Kazemipoor M, Azizi N, Farahat F. Evaluation of microhardness of mineral trioxide aggregate after immediate placement of different coronal restorations: an in vitro study. J Dent (Tehran, Iran). 2018;15:116–22.
Hals E. Root caries: distribution and uptake of elements in lesions adjacent to silicate or amalgam restorations. Scand J Dent Res. 1976;84:367–71. (PMID: 1070128)
Kaup M, Schafer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:16. (PMID: 10.1186/s13005-015-0074-9)
Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus Biodentine: review of literature with a comparative analysis. J Clin Diagn Res JCDR 2017;11:Zg01–Zg05.
Grant Information:
8911272068 Tehran University of Medical Sciences and Health Services
Contributed Indexing:
Keywords: Amalgam; Calcium silicate; Composite resin; Glass ionomer cement; Interface
Substance Nomenclature:
0 (Calcium Compounds)
0 (Drug Combinations)
0 (Glass Ionomer Cements)
0 (Silicates)
1327-39-5 (Silicate Cement)
S4255P4G5M (calcium silicate)
SY7Q814VUP (Calcium)
Entry Date(s):
Date Created: 20200429 Date Completed: 20210111 Latest Revision: 20210111
Update Code:
20240105
DOI:
10.1007/s10266-020-00521-z
PMID:
32342240
Czasopismo naukowe
The aim was to evaluate the interfacial characteristics of Biodentine, CEM Cement, and ProRoot MTA when restored with different final restorative materials after different time intervals. Biodentine, CEM Cement and ProRoot MTA were layered with amalgam, composite resin or light cure glass ionomer cement. Layering was done either immediately, 24 or 72 h after cement placement. The interface of cements with restorative materials was characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) after separation. Vickers surface microhardness test was also performed on the interface. Statistical analysis included two-way Anova, Dunnett T3, and Tukey HSD. The significance level was set at P < 0.05. The highest microhardness values were seen when restorative materials were layered after 24 h in the case of Biodentine, and after 72 h in the case of CEM Cement and ProRoot MTA. In ProRoot MTA no significant difference was seen in the microhardness when layered with different restorative materials regardless of the time of layering. In immediate layering, Biodentine exhibited the highest microhardness values. Both immediate and delayed layering resulted in element transfer between calcium silicate cements (CSCs) and restorative materials. Deposition and depletion of element occurs subsequent to layering of restorative materials on CSCs. When immediate layering is necessary, Biodentine may be a better option compared to other CSCs evaluated.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies