Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of β 2 -receptor stimulation by indacaterol in chronic heart failure treated with selective or non-selective β-blockers: a randomized trial.

Tytuł:
Effects of β 2 -receptor stimulation by indacaterol in chronic heart failure treated with selective or non-selective β-blockers: a randomized trial.
Autorzy:
Contini M; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Spadafora E; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Barbieri S; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Gugliandolo P; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Salvioni E; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Magini A; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Apostolo A; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Palermo P; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Alimento M; Centro Cardiologico Monzino, IRCCS, Milano, Italy.
Agostoni P; Centro Cardiologico Monzino, IRCCS, Milano, Italy. .; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy. .
Źródło:
Scientific reports [Sci Rep] 2020 Apr 28; Vol. 10 (1), pp. 7101. Date of Electronic Publication: 2020 Apr 28.
Typ publikacji:
Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Adrenergic beta-2 Receptor Agonists/*administration & dosage
Adrenergic beta-Antagonists/*administration & dosage
Bisoprolol/*administration & dosage
Carvedilol/*administration & dosage
Heart Failure/*drug therapy
Indans/*administration & dosage
Quinolones/*administration & dosage
Adrenergic beta-2 Receptor Agonists/adverse effects ; Adrenergic beta-Antagonists/adverse effects ; Aged ; Bisoprolol/adverse effects ; Carvedilol/adverse effects ; Cross-Over Studies ; Double-Blind Method ; Female ; Heart Failure/pathology ; Heart Failure/physiopathology ; Humans ; Indans/adverse effects ; Male ; Middle Aged ; Prospective Studies ; Quinolones/adverse effects ; Receptors, Adrenergic, beta-2/metabolism
References:
Carr, R. 3rd et al. beta-arrestin-biased signaling through the beta2-adrenergic receptor promotes cardiomyocyte contraction. Proceedings of the National Academy of Sciences of the United States of America 113, E4107–4116, https://doi.org/10.1073/pnas.1606267113 (2016). (PMID: 10.1073/pnas.1606267113273545174948363)
Santulli, G. & Iaccarino, G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 93, 65–72, https://doi.org/10.1016/j.maturitas.2016.03.022 (2016). (PMID: 10.1016/j.maturitas.2016.03.022270627095036981)
Lohse, M. J., Engelhardt, S. & Eschenhagen, T. What is the role of beta-adrenergic signaling in heart failure? Circulation Research 93, 896–906, https://doi.org/10.1161/01.RES.0000102042.83024.CA (2003). (PMID: 10.1161/01.RES.0000102042.83024.CA14615493)
Lang, D. et al. Arrhythmogenic remodeling of beta2 versus beta1 adrenergic signaling in the human failing heart. Circulation. Arrhythmia and Electrophysiology 8, 409–419, https://doi.org/10.1161/CIRCEP.114.002065 (2015). (PMID: 10.1161/CIRCEP.114.002065256736294608687)
Mutlu, G. M. & Sznajder, J. I. Mechanisms of pulmonary edema clearance. American Journal of Physiology. Lung Cellular and Molecular Physiology 289, L685–695, https://doi.org/10.1152/ajplung.00247.2005 (2005). (PMID: 10.1152/ajplung.00247.200516214819)
Downs, C. A. et al. beta-Adrenergic agonists differentially regulate highly selective and nonselective epithelial sodium channels to promote alveolar fluid clearance in vivo. American Journal of Physiology. Lung Cellular and Molecular Physiology 302, L1167–1178, https://doi.org/10.1152/ajplung.00038.2012 (2012). (PMID: 10.1152/ajplung.00038.2012225056703379040)
Agostoni, P. et al. Lung function with carvedilol and bisoprolol in chronic heart failure: is beta selectivity relevant? European Journal of Heart Failure 9, 827–833, https://doi.org/10.1016/j.ejheart.2007.04.006 (2007). (PMID: 10.1016/j.ejheart.2007.04.00617561440)
Contini, M. et al. Multiparametric comparison of CARvedilol, vs. NEbivolol, vs. BIsoprolol in moderate heart failure: the CARNEBI trial. International Journal of Cardiology 168, 2134–2140, https://doi.org/10.1016/j.ijcard.2013.01.277 (2013). (PMID: 10.1016/j.ijcard.2013.01.27723506636)
Di Marco, F. et al. Salmeterol improves fluid clearance from alveolar-capillary membrane in COPD patients: a pilot study. Pulmonary Pharmacology & Therapeutics 25, 119–123, https://doi.org/10.1016/j.pupt.2011.12.010 (2012). (PMID: 10.1016/j.pupt.2011.12.010)
Taylor, B. J. et al. Effect of beta2-adrenergic receptor stimulation on lung fluid in stable heart failure patients. The Journal of Heart and Lung Transplantation: the official Publication of the International Society for Heart Transplantation 36, 418–426, https://doi.org/10.1016/j.healun.2016.09.008 (2017). (PMID: 10.1016/j.healun.2016.09.008)
Culver, B. H. et al. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. American Journal of Respiratory and Critical Care Medicine 196, 1463–1472, https://doi.org/10.1164/rccm.201710-1981ST (2017). (PMID: 10.1164/rccm.201710-1981ST29192835)
Quanjer, P. H. et al. Lung volumes and forced ventilatory flows. The European Respiratory Journal 6(Suppl 16), 5–40, https://doi.org/10.1183/09041950.005s1693 (1993). (PMID: 10.1183/09041950.005s169324576915)
Roughton, F. J. & Forster, R. E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. Journal of Applied Physiology 11, 290–302, https://doi.org/10.1152/jappl.1957.11.2.290 (1957). (PMID: 10.1152/jappl.1957.11.2.29013475180)
Agostoni, P. et al. Work-rate affects cardiopulmonary exercise test results in heart failure. European Journal of Heart Failure 7, 498–504, https://doi.org/10.1016/j.ejheart.2004.06.007 (2005). (PMID: 10.1016/j.ejheart.2004.06.00715921786)
Agostoni, P. & Dumitrescu, D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. International Journal of Cardiology 288, 107–113, https://doi.org/10.1016/j.ijcard.2019.04.053 (2019). (PMID: 10.1016/j.ijcard.2019.04.05331047701)
Berry, R. B. et al. AASM Scoring Manual Updates for 2017 (Version 2.4). Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep Medicine 13, 665–666, https://doi.org/10.5664/jcsm.6576 (2017). (PMID: 10.5664/jcsm.6576)
Senn, S. Cross-over Trials in Clinical Research, 2nd Edition. (Wiley, 2002).
Hawkins, N. M., Virani, S. & Ceconi, C. Heart failure and chronic obstructive pulmonary disease: the challenges facing physicians and health services. European Heart Journal 34, 2795–2803, https://doi.org/10.1093/eurheartj/eht192 (2013). (PMID: 10.1093/eurheartj/eht19223832490)
Salpeter, S. R., Ormiston, T. M. & Salpeter, E. E. Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis. Chest 125, 2309–2321, https://doi.org/10.1378/chest.125.6.2309 (2004). (PMID: 10.1378/chest.125.6.230915189956)
Juvelekian, G. et al. A real-world evaluation of indacaterol and other bronchodilators in COPD: the INFLOW study. International Journal of Chronic Obstructive Pulmonary Disease 10, 2109–2120, https://doi.org/10.2147/COPD.S83071 (2015). (PMID: 10.2147/COPD.S83071264912814599566)
Agostoni, P. et al. Gas diffusion and alveolar-capillary unit in chronic heart failure. European Heart Journal 27, 2538–2543, https://doi.org/10.1093/eurheartj/ehl302 (2006). (PMID: 10.1093/eurheartj/ehl30217028107)
Agostoni, P. et al. Carvedilol reduces exercise-induced hyperventilation: A benefit in normoxia and a problem with hypoxia. European Journal of Heart Failure 8, 729–735, https://doi.org/10.1016/j.ejheart.2006.02.001 (2006). (PMID: 10.1016/j.ejheart.2006.02.00116533619)
Agostoni, P., Guazzi, M., Bussotti, M., De Vita, S. & Palermo, P. Carvedilol reduces the inappropriate increase of ventilation during exercise in heart failure patients. Chest 122, 2062–2067, https://doi.org/10.1378/chest.122.6.2062 (2002). (PMID: 10.1378/chest.122.6.206212475848)
Paolillo, S. et al. Role of alveolar beta2-adrenergic receptors on lung fluid clearance and exercise ventilation in healthy humans. PloS One 8, e61877, https://doi.org/10.1371/journal.pone.0061877 (2013). (PMID: 10.1371/journal.pone.0061877236139623627811)
Clark, A. L., Poole-Wilson, P. A. & Coats, A. J. Relation between ventilation and carbon dioxide production in patients with chronic heart failure. Journal of the American College of Cardiology 20, 1326–1332 (1992). (PMID: 10.1016/0735-1097(92)90244-H)
Whipp, B. J. Ventilatory control during exercise in humans. Annual Review of Physiology 45, 393–413, https://doi.org/10.1146/annurev.ph.45.030183.002141 (1983). (PMID: 10.1146/annurev.ph.45.030183.0021416405676)
Patrick, J. M. & Pearson, S. B. Propranolol and the ventilatory response to CO 2 and hypoxia in man [proceedings]. The Journal of Physiology 276, 68P–69P (1978). (PMID: 206686)
Lymperopoulos, A. Arrestins in the Cardiovascular System: An Update. Progress in Molecular Biology and Translational Science 159, 27–57, https://doi.org/10.1016/bs.pmbts.2018.07.003 (2018). (PMID: 10.1016/bs.pmbts.2018.07.00330340788)
Desimine, V. L. et al. Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy. International Review of Cell and Molecular Biology 339, 41–61, https://doi.org/10.1016/bs.ircmb.2018.02.007 (2018). (PMID: 10.1016/bs.ircmb.2018.02.00729776604)
Substance Nomenclature:
0 (Adrenergic beta-2 Receptor Agonists)
0 (Adrenergic beta-Antagonists)
0 (Indans)
0 (Quinolones)
0 (Receptors, Adrenergic, beta-2)
0K47UL67F2 (Carvedilol)
8OR09251MQ (indacaterol)
Y41JS2NL6U (Bisoprolol)
Entry Date(s):
Date Created: 20200430 Date Completed: 20201130 Latest Revision: 20210428
Update Code:
20240105
PubMed Central ID:
PMC7188807
DOI:
10.1038/s41598-020-62644-1
PMID:
32345990
Czasopismo naukowe
Alveolar β 2 -receptor blockade worsens lung diffusion in heart failure (HF). This effect could be mitigated by stimulating alveolar β 2 -receptors. We investigated the safety and the effects of indacaterol on lung diffusion, lung mechanics, sleep respiratory behavior, cardiac rhythm, welfare, and exercise performance in HF patients treated with a selective (bisoprolol) or a non-selective (carvedilol) β-blocker. Study procedures were performed before and after indacaterol and placebo treatments according to a cross-over, randomized, double-blind protocol in forty-four patients (27 on bisoprolol and 17 on carvedilol). No differences between indacaterol and placebo were observed in the whole population except for a significantly higher VE/VCO 2 slope and lower maximal P ET CO 2 during exercise with indacaterol, entirely due to the difference in the bisoprolol group (VE/VCO 2 31.8 ± 5.9 vs. 28.5 ± 5.6, p < 0.0001 and maximal P ET CO 2 36.7 ± 5.5 vs. 37.7 ± 5.8 mmHg, p < 0.02 with indacaterol and placebo, respectively). In carvedilol, indacaterol was associated with a higher peak heart rate (119 ± 34 vs. 113 ± 30 bpm, with indacaterol and placebo) and a lower prevalence of hypopnea during sleep (3.8 [0.0;6.3] vs. 5.8 [2.9;10.5] events/hour, with indacaterol and placebo). Inhaled indacaterol is well tolerated in HF patients, it does not influence lung diffusion, and, in bisoprolol, it increases ventilation response to exercise.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies