Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography.

Tytuł:
Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography.
Autorzy:
Alba-Alejandre I; Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain. .
Alba-Tercedor J; Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain. .
Hunter WB; U.S. Department Agriculture, Agricultural Research Service, Fort Pierce, Florida, USA.
Źródło:
Scientific reports [Sci Rep] 2020 Apr 28; Vol. 10 (1), pp. 7161. Date of Electronic Publication: 2020 Apr 28.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Genitalia, Female*/anatomy & histology
Genitalia, Female*/microbiology
Hemiptera*/anatomy & histology
Hemiptera*/microbiology
Rhizobiaceae*/classification
Rhizobiaceae*/growth & development
X-Ray Microtomography*
Animals ; Female
References:
Mead, F. W. & Fasulo, T. R. Asian citrus psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae). Ser. Entomol. Nematol. Dep. UF/IFAS Ext. EENY-033, 1–8 (2017).
Shen, W. et al. Occurrence and in-grove distribution of citrus huanglongbing in north central Florida. Journal of Plant Pathology 95, 361–371 (2013).
Halbert, S. S. E. S. & Manjunath, K. K. L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomol. 87, 330–353 (2004). (PMID: 10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO;2)
McClean, A. & Oberholzer, P. Greening disease of the sweet orange: evidence that it is caused by a transmissible virus. South African J. 8, 253–276 (1965).
Capoor, S., Rao, D. & Viswanath, S. Diaphorina citri Kuway., a vector of the greening disease of citrus in India. Indian J. Agric. Sci. 37, 572–579 (1967).
Pelz-Stelinski, K. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). J. Econ. … (2010).
Kuwayama, S. Die Psylliden Japanese. Trans. Sapporo Nat. Hist. Soc. 2, 149–189. (D. citri: p. 160–161, Plate III,Fig. 16) (1907).
Inoue, H. et al. Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Ann. Appl. Biol. 155, 29–36 (2009). (PMID: 10.1111/j.1744-7348.2009.00317.x)
Pelz-Stelinski, K. S. & Killiny, N. Better together: association with ‘Candidatus Liberibacter asiaticus’ increases the reproductive fitness of its insect vector, Diaphorina citri (Hemiptera: Liviidae). Ann. Entomol. Soc. Am. 109, 371–376 (2016). (PMID: 27418697487436210.1093/aesa/saw007)
Austin, C. Morphology of Acercaria: investigations of the ovipositor and internal anatomy. Thesis (M.Sc.) University of Illinois at Urbana-Champaign (2016).
Bitsch, J. Morphologie Abdominale des Insectes. Ordre des Homoptères, B.-Psylles. in Traité de Zoologie. Anatomie, Systématique, Biologie. T. VIII, Insectes Thorax, Abdomen. Fasc. II (ed. Grassé, P.-P.) 420–429 (Masson et Cie., 1979).
Snodgrass, R. E. Principles of Insect Morphology. (McGraw-Hill Book Company, Inc, 1935). 0801428831.
Blowers, J. R., Moran, V. C. & Bitsch, J. Notes on the female reproductive system of the south african citrus Psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. South. Afr. 30, 75–81 (1967).
Brittain, W. H. The morphology and synonymy of Psylla mali Schmidberger. Proceeding Acadian Entomol. Soc. 8, 23–51 (1922).
Hodkinson, I. D. & White, I. M. Homoptera Psylloidea. (Royal Entomological Society of London, 1979).
Muir, F. L. I. I. I. —Notes on certain controversial points of morphology of the abdomen and genitalia of Psyllidæ. Ann. Mag. Nat. Hist. Ser. 10 5, 545–552 (1930). (PMID: 10.1080/00222933008673163)
Ossiannilsson, F. The Psylloidea (Homoptera) of Fennoscandia and Demark. (E.J. Brill, 1992).
Pesson, P. Ordre des Homoptères (Homoptera Leach, 1815). In Traité de zoologie. Anatomie, systématique, biologie. Tome X. Fascicule II. Insectes supérieurs et Hémipteróides (ed. Grassé, P.-P.) 1390–1656 (Masson et Cie., 1951).
Prophetou-Athanasiadou, D. A. & Tzanakakis, M. E. The reproductive system and ovarian development of the adult olive psylla Euphyllura phillyreae Foerster (Homoptera: Aphalaridae). Entomol. Hell. 12, 37–45 (1998). (PMID: 10.12681/eh.14018)
Saunders, L. G. The Anatomy of Psyllia mali Schmidberger. Thesis (M. Sc.) McGill University, Montreal (1921).
Witlaczil, E. D. A. der Psylloden. Zeitschrift für wissenschaftliche Zool. 42, 569–638 (1885).
Zucht, B. Bau und Entwicklung der äußeren Genitalorgane bei Psyllinen (Homopteren). Zool. Jb. Anat. Bd. 231, 167–231 (1972).
Matsuda, R. The Homoptera. In Morphology and Evolution of the Insect Abdomen 280–299, https://doi.org/10.1016/B978-0-08-018753-2.50040-X (Pergamon Press Ltd., 1976).
Dossi, F. C. A. & Cônsoli, F. L. F. Gross morphology and ultrastructure of the female reproductive system of Diaphorina citri (Hemiptera: Liviidae). Zoologia 31, 162–169 (2014). (PMID: 10.1590/S1984-46702014000200007)
Dossi, F. C. A. & Cônsoli, F. L. Desenvolvimento ovariano e influência da cópula na maturação dos ovários de Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Neotrop. Entomol. 39, 414–419 (2010). (PMID: 2067651510.1590/S1519-566X2010000300015)
Chapman, R. F. The Insects Structure and Function. (Cambridge University Press, 2013).
Baumann, P. Biology of bacteriocyte-associated endosymbionts of Plant sap-sucking insects. Annu. Rev. Microbiol. 58, 155–183 (2005). (PMID: 10.1146/annurev.micro.59.030804.121041)
Chu, C.-C., Gill, T. A., Hoffmann, M. & Pelz-Stelinski, K. S. Inter-population variability of endosymbiont densities in the Asian citrus psyllid (Diaphorina citri Kuwayama). Microb. Ecol. 71, 999–1007 (2016). (PMID: 26846216494457410.1007/s00248-016-0733-9)
Kuechler, S. M., Renz, P., Dettner, K. & Kehl, S. Diversity of symbiotic organs and bacterial endosymbionts of: Lygaeoid bugs of the families blissidae and lygaeidae (Hemiptera:: Heteroptera: Lygaeoidea). Appl. Environ. Microbiol. 78, 2648–2659 (2012). (PMID: 22307293331882010.1128/AEM.07191-11)
Matsuura, Y. et al. Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J. 6, 397–409 (2012). (PMID: 2181428910.1038/ismej.2011.103)
Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478–1484 (2013). (PMID: 2385028210.1016/j.cub.2013.06.027)
Subandiyah, S., Nikoh, N., Tsuyumu, S., Somowiyarjo, S. & Fukatsu, T. Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zoolog. Sci. 17, 983–989 (2000). (PMID: 10.2108/zsj.17.983)
Weintraub, P. G., Hoch, H., Mühlethaler, R. & Zchori-Fein, E. Synchrotron X-ray micro-computed tomography as a tool for in situ elucidation of insect bacteriomes. Arthropod Struct. Dev. 43, 183–186 (2014). (PMID: 2429167210.1016/j.asd.2013.11.002)
Ammar, E.-D. & Hall, D. G. New and simple methods for studying hemipteran stylets, bacteriomes, and salivary sheaths in host plants. Ann. Entomol. Soc. Am. 105, 731–739 (2012). (PMID: 10.1603/AN12056)
Dan, H., Ikeda, N., Fujikami, M. & Nakabachi, A. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLoS One 12, e0189779 (2017). (PMID: 29240843573017710.1371/journal.pone.0189779)
Ren, S.-L. et al. Localization and dynamics of Wolbachia infection in Asian citrus psyllid Diaphorina citri, the insect vector of the causal pathogens of Huanglongbing. Microbiol. Open 7, 561 (2018). (PMID: 10.1002/mbo3.561)
Aldrovandi, U. De Animalibus Insectis Libri. (1602).
Malpighi, M. Dissertatio epistolica de bombyce. (J. Martyn & J. Allestry, regiæ societatis typographos, 1669).
Alba-Tercedor, J. & Alba-Alejandre, I. Comparing micro-CT results of insects with classical anatomical studies: The European honey bee (Apis mellifera Linnaeus, 1758) as a benchmark (Insecta: Hymenoptera, Apidae). Microsc. Anal. 3, 12-15 EU (2019).
Wipfler, B., Pohl, H., Yavorskaya, M. I. & Beutel, R. G. A review of methods for analysing insect structures — the role of morphology in the age of phylogenomics. Curr. Opin. Insect Sci. 18, 60–68 (2016). (PMID: 2793971210.1016/j.cois.2016.09.004)
Simonsen, T. J. & Kitching, I. J. Virtual dissections through micro-CT scanning: a method for non-destructive genitalia ‘dissections’ of valuable Lepidoptera material. Syst. Entomol. 39, 606–618 (2014). (PMID: 10.1111/syen.12067)
Martín-Vega, D. et al. Micro-computed tomography visualization of the vestigial alimentary canal in adult oestrid flies. Med. Vet. Entomol. 32, 378–382 (2018). (PMID: 2945129810.1111/mve.12301)
Lowe, T., Garwood, R. J., Simonsen, T. J., Bradley, R. S. & Withers, P. J. Metamorphosis revealed: time-lapse three-dimensional imaging inside a living chrysalis. J. R. Soc. Interface 10, 20130304 (2013). (PMID: 23676900367316910.1098/rsif.2013.0304)
Helm, B. R. et al. Micro-computed tomography of pupal metamorphosis in the solitary bee Megachile rotundata. Arthropod Struct. Dev. 47, 521–528 (2018). (PMID: 2990908010.1016/j.asd.2018.05.001)
Raś, M., Iwan, D. & Kamiński, M. J. The tracheal system in post-embryonic development of holometabolous insects: a case study using the mealworm beetle. J. Anat. 232, 997–1015 (2018). (PMID: 2957491710.1111/joa.12808)
Alba-Tercedor, J. Studying the anatomy of wet specimens of mayflies of the genus Baetis (Insecta: Ephemeroptera) by scanning them into a liquid with the Skyscan 1172 high resolution micro-CT. SkyScan Micro-CT Users Meet. 2012, 192–195 (2012).
Alba-Tercedor, J. 3D micro-CT study of the anatomy of the nymph of the mayfly Baetis alpinus, ( http://www.youtube.com/watch?v=TFSAhrDnt5E , 2012).
Alba-Tercedor, J. Micro-CT study of the anatomy of the nymph of the mayfly Ephemera danica, ( https://www.youtube.com/watch?v=RpzxsSV42yk , 2012).
Alba-Tercedor, J. 3D micro-CT study of the anatomy of the male adult of the mayfly Epeorus assimilis, ( http://www.youtube.com/watch?v=Tqv9rTQ42aw , 2012.
Alba-Tercedor, J. Micro-CT study of the anatomy of the male adult of the mayfly species Epeorus assimilis, ( http://www.youtube.com/watch?v=knvRVrbways , 2012).
Alba-Tercedor, J. & Sáinz-Cantero Caparrós, C. E. Volume rendering reconstructions of the anatomy of small aquatic beetles (Insecta: Coleoptera) scanned with the Skyscan 1172 high resolution micro-CT. In SkyScan Micro-CT Users Meeting 2012 75–84 (2012).
Alba-Tercedor, J. Study of the anatomy of the common housefly Musca domestica Linnaeus, 1758 (Insecta: Diptera, Muscidae) scanned with the Skyscan 1172 high resolution micro-CT. Bruker Micro-CT Users Meet. 2013 275–289 (2013).
Alba-Tercedor, J. Microtomografías de invertebrados. Investig. Cienc. Mayo, 42–43 (2014).
Alba-Tercedor, J. & Sánchez Almazo, I. The use of micro-CT for the study of eggs and development in insects: a comparison of two microtomographs. Microsc. Anal. 7–10 (2014).
Alba-Tercedor, J. Microtomographic study on the anatomy of adult male eyes of two mayfly species. Zoosymposia 11, 101 (2016). (PMID: 10.11646/zoosymposia.11.1.13)
Alba-Tercedor, J. & Bartomeus, I. Micro-CT as a tool straddling scientist research, art and education. Study of Osmia sp., a mason bee (Insecta, Hymenoptera: Megachilidae). In Bruker Micro-CT Users Meeting 2016 74–91 (2016).
Schambach, S. J., Bag, S., Schilling, L., Groden, C. & Brockmann, M. A. Application of micro-CT in small animal imaging. Methods 50, 2–13 (2010). (PMID: 1970632610.1016/j.ymeth.2009.08.007)
Soriano, C. et al. Synchrotron X-ray imaging of inclusions in amber. Comptes Rendus Palevol 9, 361–368 (2010). (PMID: 10.1016/j.crpv.2010.07.014)
Alba-Tercedor, J. & Sáinz-Cantero Caparrós, C. E. Studying Aquatic Insects Anatomy with the SkyScan 1172 high-resolution micro-CT. In SkyScan User Meeting 2010 2: 8-11 (2010).
Wipfler, B., Wieland, F., DeCarlo, F. & Hörnschemeyer, T. Cephalic morphology of Hymenopus coronatus (Insecta: Mantodea) and its phylogenetic implications. Arthropod Struct. Dev. 41, 87–100 (2012). (PMID: 2207512810.1016/j.asd.2011.06.005)
Alba-Tercedor, J. & Sánchez Almazo, I. Looking beyond the small: micro-CT study of eggs and development in insects: comparison of the results obtained with the Skyscan 1172 and the attachment for SEM microtomographs. In Bruker Micro-CT Users Meeting 2013 102–110 (2013).
Alba-Alejandre, I., Alba-Tercedor, J. & Vega, F. E. Anatomical study of the coffee berry borer (Hypothenemus hampei) using micro-computed tomography. Sci. Rep. 9(17150), 1–16 (2019).
Alba-Tercedor, J., Alba-Alejandre, I. & Vega, F. E. Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei, Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography. Sci. Reports 9(17753), 1–17 (2019).
Westneat, M. W. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299, 558–560 (2003). (PMID: 1254397310.1126/science.1078008)
Jiang, Z.-R., Kinoshita, ichi, Sasaki, O., Cognato, A. I. & Kajimura, H. Non-destructive observation of the mycangia of Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae) using X-ray computed tomography., https://doi.org/10.1111/ens.12353 (2019).
Kypke, J. L. & Solodovnikov, A. Every cloud has a silver lining: X-ray micro-CT reveals Orsunius rove beetle in Rovno amber from a specimen inaccessible to light microscopy. Hist. Biol. 1–11, https://doi.org/10.1080/08912963.2018.1558222 (2018).
Shaha, R. K., Vogt, J. R., Han, C.-S. & Dillon, M. E. A micro-CT approach for determination of insect respiratory volume. Arthropod Struct. Dev. 42, 437–442 (2013). (PMID: 2383152710.1016/j.asd.2013.06.003)
Li, D., Zhang, K., Zhu, P., Wu, Z. & Zhou, H. 3D configuration of mandibles and controlling muscles in rove beetles based on micro-CT technique. Anal. Bioanal. Chem. 401, 817–825 (2011). (PMID: 2160416810.1007/s00216-011-5088-y)
Ha, Y.-R., Yeom, E., Ryu, J. & Lee, S.-J. Three-dimensional structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae. Sci. Reports. Nat. Publ. Gr., https://doi.org/10.1038/srep44490 (2017).
Iwan, D., Kamiński, M. J. & Raś, M. The Last Breath: A μCT-based method for investigating the tracheal system in Hexapoda. Arthropod Struct. Dev. 44, 218–227 (2015). (PMID: 2579115810.1016/j.asd.2015.02.002)
Greco, M. et al. 3-D visualisation, printing, and volume determination of the tracheal respiratory system in the adult desert locust, Schistocerca gregaria. Entomol. Exp. Appl. 152, 42–51 (2014). (PMID: 10.1111/eea.12199)
Greenlee, K. J. et al. Synchrotron imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry. Am. J. Physiol. Integr. Comp. Physiol. 297, R1343–R1350 (2009). (PMID: 10.1152/ajpregu.00231.2009)
Li, Y. et al. Structure of the Ambrosia beetle (Coleoptera: Curculionidae) mycangia revealed through micro-computed tomography. J. Insect Sci. 18, 13–14 (2018). (PMID: 61811966181196)
Smith, D. B. et al. Exploring miniature insect brains using micro-CT scanning techniques. Sci. Rep. 6, 21768 (2016). (PMID: 26908205476486510.1038/srep21768)
Greco, M. K., Tong, J., Soleimani, M., Bell, D. & Schäfer, M. O. Imaging live bee brains using minimally-invasive diagnostic radioentomology. J. Insect Sci. 12, 89 (2012). (PMID: 234217523596940)
Sombke, A., Lipke, E., Michalik, P., Uhl, G. & Harzsch, S. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. J. Comp. Neurol. 523, 1281–95 (2015). (PMID: 25728683440982310.1002/cne.23741)
Ribi, W., Senden, T. J., Sakellariou, A., Limaye, A. & Zhang, S. Imaging honey bee brain anatomy with micro-X-ray-computed tomography. J. Neurosci. Methods 171, 93–7 (2008). (PMID: 1840030410.1016/j.jneumeth.2008.02.010)
Alba-Tercedor, J., Sáinz-Bariáin, M. & Zamora-Muñoz, C. Changing the pupal–case architecture as a survival strategy in the caddisfly Annitella amelia Sipahiler, 1998 (Insecta, Trichoptera). Anim. Biodivers. Conserv. 39, 65–75 (2016). (PMID: 10.32800/abc.2016.39.0065)
Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS One 7, e33914 (2012). (PMID: 22442735330778210.1371/journal.pone.0033914)
Alba-Alejandre, I., Alba-Tercedor, J. & Vega, F. E. Observing the devastating coffee berry borer (Hypothenemus hampei) inside the coffee berry using micro-computed tomography. Sci. Rep. 8(17033), 1–9 (2018).
Alba-Alejandre, I., Alba-Tercedor, J. & Vega, F. E. Micro-CT to document the coffee bean weevil, Araecerus fasciculatus (Coleoptera: Anthribidae), inside field-collected coffee berries (Coffea canephora). Insects 9, 1–9 (2018). (PMID: 10.3390/insects9030100)
Taylor, G. J. et al. The dual function of orchid bee ocelli as revealed by X-ray microtomography. Curr. Biol. 26, 1319–24 (2016). (PMID: 2711229810.1016/j.cub.2016.03.038)
Beaver, R. A. Insect–fungus relationships in the bark and ambrosia beetles. in Insect–Fungus Interactions (eds. Wilding N, NM, C., PM, H. & JF, W.) 121–143 (Academic Press Inc., 1989).
Alba-Tercedor, J., Hunter, W. B., Cicero, J. & Brown, S. Micro-CT scanning of Asian citrus psyllid, Diaphorina citri, anatomy and feeding. J. Citrus Pathol. 4, 1–2 (2017).
Alba-Alejandre, I., Hunter, W. B. & Alba-Tercedor, J. Micro-CT study of male genitalia and reproductive system of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Insecta: Hemiptera, Liviidae). PLoS One 13, 1–11 (2018). (PMID: 10.1371/journal.pone.0202234)
Brown, R. G. & Hodkinson, I. D. Taxonomy and Ecology of the Jumping Plant-lice of Panama: Homoptera, Psylloidea. (E. J. Brill/Scandanavian Science Press Ltd., 1988).
Crawford, D. L. A monograph of the jumping plant lice or Psyllidae of the New World. Bull. U.S. Natn.Mus 85, 1–182 (1914). (PMID: 10.5479/si.03629236.85.1)
Büning, J. & Büning, J. The ovary of Ectognatha, the Insecta s. str. In The Insect Ovary 31–324, https://doi.org/10.1007/978-94-011-0741-9_3 (Springer Netherlands, 1994).
Blowers, J. R. & Moran, V. C. Notes on the female reproductive system of the South African. Citrus Psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. South. Afr. 30, 75–81 (1967).
Hodin, J. She shapes events as they come: plasticity in female insect reproduction. Phenotypic plasticity of insects: mechanisms and consequences. (Science Publishers, Inc., 2009). Enfield, Science Publishers.
Gillott, C. Entomology. Entomology (Springer, 2005).
Gullan, P. J. & Cranston, P. S. Insects: An Outline of Entomology. (Willey-Blackwell, 2010).
Marchini, D., Del Bene, G., Viscuso, R. & Dallai, R. Sperm storage by spermatodoses in the spermatheca of Trioza alacris (Flor, 1861) Hemiptera, Psylloidea, Triozidae: a structural and ultrastructural study. J. Morphol 273, 195–210 (2012). (PMID: 2202532810.1002/jmor.11017)
Pascini, T. V. & Martins, G. F. The insect spermatheca: an overview. Zoology 121, 56–71 (2017). (PMID: 2808934510.1016/j.zool.2016.12.001)
Barcellos, M. S., Fernanda, J., Cossolin, S., Dias, G. & Lino-Neto, J. Sperm morphology of the leafhopper Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psylloidea: Liviidae). Micron 99, 49–55 (2017). (PMID: 2843133210.1016/j.micron.2017.03.017)
Stacconi, M. & Romani, R. Ultrastructural and functional aspects of the spermatheca in the american harlequin bug, Murgantia histrionica (Hemiptera: Pentatomidae). Neotrop. Entomol. 40, 222–230 (2011). (PMID: 2158440410.1590/S1519-566X2011000200011)
De Santis, F. et al. Colleterial glands of Sesamia nonagrioides as a source of the host-recognition kairomone for the egg parasitoid Telenomus busseolae. Physiol. Entomol. 33, 7–16 (2008). (PMID: 10.1111/j.1365-3032.2007.00593.x)
Scudder, G. G. E. The female genitalia of the Heteroptera: morphology and bearing on classification. Trans. R. Entomol. Soc. London 111, 405–467 (1959). (PMID: 10.1111/j.1365-2311.1959.tb02873.x)
Scudder, G. G. E. The comparative morphology of the insect ovipositor. Trans. R. Entomol. Soc. London 113, 25–40 (1961). (PMID: 10.1111/j.1365-2311.1961.tb00800.x)
Hodkinson, I. D. Psyllidae (Jumping plant-lice, psyllids) History of ague (vivax malaria) in northern Britain View project Review of Arctic insect biodiversity View project. (2017).
Burckhardt, D. Jumping plant lice (Homoptera: Psylloidea) of the temperate neotropical region. Part 2: Psyllidae (subfamilies Diaphorininae, Acizziinae, Ciriacreminae and Psyllinae). Zool. J. Linn. Soc. 90, 145–205 (1987). (PMID: 10.1111/j.1096-3642.1987.tb01353.x)
Burckhardt, D. Generic key to chilean jumping plant·lice (Homoptera: Psylloidea) with inclusion of potential exotic pests. Rev. Chil. Ent. 21, 57–67 (1994).
Klass, K.-D., Matushkina, N. A. & Kaidel, J. The gonangulum: A reassessment of its morphology, homology, and phylogenetic significance. Arthropod Struct. Dev. 41, 373–394 (2012). (PMID: 2246530810.1016/j.asd.2012.03.001)
Sukthankar, P. et al. Branched amphiphilic peptide capsules: Cellular uptake and retention of encapsulated solutes. Biochim. Biophys. Acta - Biomembr. 1838, 2296–2305 (2014). (PMID: 10.1016/j.bbamem.2014.02.005)
Alba-Tercedor, J. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae). In Bruker Micro-CT Users Meeting 2014 260–288 (Bruker microCT-Skyscan, 2014).
Alba-Tercedor, J., Hunter, W. B., Cicero, J. M. & Sáinz-Bariáin, M. Use of micro-CT to elucidate details of the anatomy and feeding of the Asian Citrus Psyllid Diaphorina citri Kuwayama, 1908 (Insecta: Hemiptera, Lividae). in Bruker Micro-CT Users Meeting 2017 270–285 (Bruker microCT-Skyscan, 2017).
Thermo Fisher Scientific. Amira 3D Visualization and Analysis Software, http://www.thermofisher.com/amira-avizo . (2017).
Stalling, D., Westerhoff, M. & Hege, H.-C. Amira: A Highly Interactive System for Visual Data Analysis. in Visualization Handbook 749–767, https://doi.org/10.1016/B978-012387582-2/50040-X (Elsevier, 2005).
Slater, A., Prior, M. & Hacking, C. Anatomical distribution of ureteric calculi in CT KUB studies: a single-centre audit. EPOS . The Royal Australian and New Zealand College of Radiologists, https://doi.org/10.1594/ranzcr2017/R-0114 (2017).
Entry Date(s):
Date Created: 20200430 Date Completed: 20201125 Latest Revision: 20210428
Update Code:
20240105
PubMed Central ID:
PMC7189384
DOI:
10.1038/s41598-020-64132-y
PMID:
32346040
Czasopismo naukowe
Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fluorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the first detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a significant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies