Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids.

Tytuł:
Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids.
Autorzy:
Lu Z; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Paolella BR; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, United States.
Truex NL; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Loftis AR; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Liao X; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Rabideau AE; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Brown MS; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, United States.
Busanovich J; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, United States.
Beroukhim R; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, United States.
Pentelute BL; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
Źródło:
ACS chemical biology [ACS Chem Biol] 2020 Jun 19; Vol. 15 (6), pp. 1358-1369. Date of Electronic Publication: 2020 May 11.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Washington, D.C. : American Chemical Society, c2006-
MeSH Terms:
Antigens, Bacterial/*chemistry
Bacterial Toxins/*chemistry
Drug Carriers/*chemistry
Oligonucleotides, Antisense/*administration & dosage
Peptide Nucleic Acids/*administration & dosage
Cell Line, Tumor ; Cell Survival/drug effects ; Drug Delivery Systems ; Genetic Therapy ; Humans ; Neoplasms/genetics ; Neoplasms/therapy ; Oligonucleotides, Antisense/pharmacology ; Peptide Nucleic Acids/pharmacology ; Phosphoproteins/genetics ; RNA Splicing Factors/genetics
References:
N Engl J Med. 2011 Dec 29;365(26):2497-506. (PMID: 22150006)
Nat Rev Cancer. 2003 Jul;3(7):477-88. (PMID: 12835668)
Oligonucleotides. 2011 Feb;21(1):29-37. (PMID: 21235293)
Nucleic Acids Res. 2018 Jan 4;46(D1):D1091-D1106. (PMID: 29149325)
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4079-87. (PMID: 27357689)
J Am Chem Soc. 2012 Jul 4;134(26):10749-52. (PMID: 22686546)
Sci Rep. 2015 Jul 16;5:11944. (PMID: 26178180)
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2073-6. (PMID: 9482840)
Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12531-4. (PMID: 8901616)
Sci Data. 2014 Sep 30;1:140035. (PMID: 25984343)
Elife. 2017 Feb 08;6:. (PMID: 28177281)
Nature. 1993 Oct 7;365(6446):566-8. (PMID: 7692304)
Curr Top Microbiol Immunol. 1992;175:27-41. (PMID: 1628498)
Cancer Cell. 2016 Sep 12;30(3):404-417. (PMID: 27622333)
Science. 1991 Dec 6;254(5037):1497-500. (PMID: 1962210)
Nat Methods. 2006 Apr;3(4):259-61. (PMID: 16554829)
Biochem Pharmacol. 1994 Sep 15;48(6):1310-3. (PMID: 7945427)
J Biol Chem. 1994 Aug 12;269(32):20607-12. (PMID: 8051159)
Curr Opin Infect Dis. 2006 Oct;19(5):401-7. (PMID: 16940861)
Cancer Cell. 2018 Apr 9;33(4):676-689.e3. (PMID: 29622463)
Bioconjug Chem. 2006 May-Jun;17(3):750-8. (PMID: 16704214)
Chem Biol. 2004 Jun;11(6):749-58. (PMID: 15217608)
Oncotarget. 2017 May 9;8(39):65123-65131. (PMID: 29029417)
N Engl J Med. 2011 Oct 13;365(15):1384-95. (PMID: 21995386)
Nat Med. 2016 Sep 7;22(9):976-86. (PMID: 27603132)
Methods. 2002 Feb;26(2):199-213. (PMID: 12054897)
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11399-404. (PMID: 21697512)
Clin Vaccine Immunol. 2010 Sep;17(9):1390-7. (PMID: 20631338)
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):E60-8. (PMID: 23248266)
Nat Genet. 2013 Feb;45(2):133-5. (PMID: 23313955)
J Mol Biol. 2004 Nov 26;344(3):739-56. (PMID: 15533442)
Nat Biotechnol. 2005 Jun;23(6):725-30. (PMID: 15895075)
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4346-51. (PMID: 18334631)
Chem Biol. 1999 Jun;6(6):343-51. (PMID: 10375543)
J Biol Chem. 1971 Mar 10;246(5):1496-503. (PMID: 5545092)
Cell. 2012 Aug 17;150(4):842-54. (PMID: 22901813)
J Clin Invest. 2007 Dec;117(12):3615-22. (PMID: 18060019)
Adv Drug Deliv Rev. 2003 Feb 10;55(2):267-80. (PMID: 12564980)
Nat Protoc. 2006;1(2):633-6. (PMID: 17406290)
Expert Opin Ther Pat. 2014 Mar;24(3):267-94. (PMID: 24405414)
Nature. 2011 Sep 11;478(7367):64-9. (PMID: 21909114)
Nature. 2015 Sep 17;525(7569):384-8. (PMID: 26331541)
Biochem Biophys Res Commun. 2008 Nov 7;376(1):200-5. (PMID: 18774771)
Nat Chem Biol. 2007 Sep;3(9):576-83. (PMID: 17643111)
Nat Rev Microbiol. 2009 Jun;7(6):439-50. (PMID: 19430490)
Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277-81. (PMID: 1438214)
Chembiochem. 2014 Nov 3;15(16):2458-66. (PMID: 25250705)
Biochemistry. 2001 Jan 9;40(1):53-64. (PMID: 11141056)
J Mol Biol. 2009 Sep 25;392(3):614-29. (PMID: 19627991)
Nature. 2012 Jun 10;486(7403):353-60. (PMID: 22722193)
Nature. 2008 Oct 23;455(7216):1061-8. (PMID: 18772890)
Cell. 2012 Sep 14;150(6):1107-20. (PMID: 22980975)
J Cell Biol. 1990 Sep;111(3):807-16. (PMID: 2391365)
Sci Adv. 2015 Jul 17;1(6):e1500112. (PMID: 26601215)
J Pathol. 2015 Mar;235(4):571-80. (PMID: 25424858)
Mol Oncol. 2013 Jun;7(3):440-51. (PMID: 23290417)
Nat Rev Mol Cell Biol. 2009 Nov;10(11):741-54. (PMID: 19773805)
Science. 2005 Jul 29;309(5735):777-81. (PMID: 16051798)
Grant Information:
F32 CA180653 United States CA NCI NIH HHS; F32 CA239362 United States CA NCI NIH HHS; R01 CA188228 United States CA NCI NIH HHS; U54 AI057159 United States AI NIAID NIH HHS
Substance Nomenclature:
0 (Antigens, Bacterial)
0 (Bacterial Toxins)
0 (Drug Carriers)
0 (Oligonucleotides, Antisense)
0 (Peptide Nucleic Acids)
0 (Phosphoproteins)
0 (RNA Splicing Factors)
0 (SF3B1 protein, human)
0 (anthrax toxin)
Entry Date(s):
Date Created: 20200430 Date Completed: 20210412 Latest Revision: 20240216
Update Code:
20240216
PubMed Central ID:
PMC7521945
DOI:
10.1021/acschembio.9b01027
PMID:
32348107
Czasopismo naukowe
Antisense oligonucleotide therapies are important cancer treatments, which can suppress genes in cancer cells that are critical for cell survival. SF3B1 has recently emerged as a promising gene target that encodes a key splicing factor in the SF3B protein complex. Over 10% of cancers have lost one or more copies of the SF3B1 gene, rendering these cancers vulnerable after further suppression. SF3B1 is just one example of a CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) gene, but over 120 additional candidate CYCLOPS genes are known. Antisense oligonucleotide therapies for cancer offer the promise of effective suppression for CYCLOPS genes, but developing these treatments is difficult due to their limited permeability into cells and poor cytosolic stability. Here, we develop an effective approach to suppress CYCLOPS genes by delivering antisense peptide nucleic acids (PNAs) into the cytosol of cancer cells. We achieve efficient cytosolic PNA delivery with the two main nontoxic components of the anthrax toxin: protective antigen (PA) and the 263-residue N -terminal domain of lethal factor (LF N ). Sortase-mediated ligation readily enables the conjugation of PNAs to the C terminus of the LF N protein. LF N and PA work together in concert to translocate PNAs into the cytosol of mammalian cells. Antisense SF3B1 PNAs delivered with the LF N /PA system suppress the SF3B1 gene and decrease cell viability, particularly of cancer cells with partial copy-number loss of SF3B1 . Moreover, antisense SF3B1 PNAs delivered with a HER2-binding PA variant selectively target cancer cells that overexpress the HER2 cell receptor, demonstrating receptor-specific targeting of cancer cells. Taken together, our efforts illustrate how PA-mediated delivery of PNAs provides an effective and general approach for delivering antisense PNA therapeutics and for targeting gene dependencies in cancer.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies