Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation.

Tytuł:
Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation.
Autorzy:
Chau AL; Materials Department University of California, Santa Barbara, CA 93106, USA. .
Rosas J; Biomolecular Science and Engineering Department University of California, Santa Barbara, CA 93106, USA.
Degen GD; Department of Chemical Engineering, University of California, Santa Barbara Santa Barbara, CA 93106, USA.
Månsson LK; Department of Physics Chalmers, University of Technology, 412 58 Gothenburg, Sweden.
Chen J; Department of Chemical Engineering, University of California, Santa Barbara Santa Barbara, CA 93106, USA.
Valois E; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
Pitenis AA; Materials Department University of California, Santa Barbara, CA 93106, USA. .
Źródło:
Journal of materials chemistry. B [J Mater Chem B] 2020 Aug 21; Vol. 8 (31), pp. 6782-6791. Date of Electronic Publication: 2020 May 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Cambridge : Royal Society of Chemistry
MeSH Terms:
Friction*
Biocompatible Materials/*chemistry
Biocompatible Materials/*pharmacology
Inflammation/*prevention & control
Prostheses and Implants/*adverse effects
Water/*chemistry
Apoptosis/drug effects ; Epithelial Cells/cytology ; Epithelial Cells/drug effects ; Gels ; Humans ; Inflammation/etiology ; Inflammation/pathology ; Stress, Mechanical ; Surface Properties
Substance Nomenclature:
0 (Biocompatible Materials)
0 (Gels)
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20200505 Date Completed: 20210331 Latest Revision: 20210331
Update Code:
20240105
DOI:
10.1039/d0tb00582g
PMID:
32364211
Czasopismo naukowe
Aqueous surface gels are fragile yet resilient biopolymer-based networks capable of sustaining extremely low friction coefficients despite tribologically-challenging environments. These superficial networks are ubiquitous in natural sliding interfaces and protect mechanosensitive cells from excessive contact pressures and frictional shear stresses from cell-fluid, cell-cell, or cell-solid interactions. Understanding these complex lubrication mechanisms may aid in the development of materials-based strategies for increasing biocompatibility in medical devices and implants. Equally as important is characterizing the interplay between soft and passive yet mobile implant materials and cellular reactions in response to direct contact and frictional shear stresses. Physically interrogating living biological systems without rupturing them in the process is nontrivial. To this end, custom biotribometers have been designed to precisely modulate contact pressures against living human telomerase-immortalized corneal epithelial (hTCEpi) cell layers using soft polyacrylamide membrane probes. Reverse-transcription quantitative polymerase chain-reaction (RT-qPCR) indicated that increased duration and, to a much greater extent, the magnitude of frictional shear stress lead to increased production of pro-inflammatory (IL-1β, IL-6, MMP9) and pro-apoptotic (DDIT3, FAS) genes, which in clinical studies are linked to pathological pain. The hierarchical structure often found in biological systems has also been investigated through the fabrication of high-water content (polyacrylamide) hydrogels through free-radical polymerization inhibition. Nanoindentation experiments and friction coefficient measurements indicate that these "gradient surface gels" reduce contact pressures and frictional shear stresses at the surface of the material while still maintaining stiffness within the bulk. Reducing frictional shear stresses through informed materials and surface design may concomitantly increase lubricity and quiet the immune response, and thus provide bio-inspired routes to improve patient outcomes and quality of life.
Erratum in: J Mater Chem B. 2020 Nov 14;8(42):9813. (PMID: 33094295)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies