Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

A protocol for the analysis of DTI data collected from young children.

Tytuł :
A protocol for the analysis of DTI data collected from young children.
Autorzy :
Tokariev M; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Vuontela V; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Perkola J; Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Lönnberg P; Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Lano A; Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Andersson S; Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Metsäranta M; Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Carlson S; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
Pokaż więcej
Źródło :
MethodsX [MethodsX] 2020 Apr 09; Vol. 7, pp. 100878. Date of Electronic Publication: 2020 Apr 09 (Print Publication: 2020).
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Amsterdam : Elsevier B.V., [2014]-
References :
Magn Reson Med. 2004 Jan;51(1):103-14. (PMID: 14705050)
Neurotherapeutics. 2007 Jul;4(3):316-29. (PMID: 17599699)
Dev Cogn Neurosci. 2018 Oct;33:161-175. (PMID: 29229299)
PLoS One. 2017 Jun 8;12(6):e0178893. (PMID: 28594884)
Biomed Eng Online. 2017 Jan 10;16(1):9. (PMID: 28086899)
Neuroimage. 2006 Jul 15;31(4):1487-505. (PMID: 16624579)
Neuroimage. 2014 Jan 1;84:320-41. (PMID: 23994314)
Pediatr Res. 2013 Jun;73(6):763-71. (PMID: 23478643)
IEEE Trans Med Imaging. 2007 Nov;26(11):1585-97. (PMID: 18041273)
Brain. 2007 Mar;130(Pt 3):654-66. (PMID: 17347255)
Neuroimage. 2015 Nov 15;122:222-32. (PMID: 26241683)
J Magn Reson Imaging. 2006 Sep;24(3):478-88. (PMID: 16897692)
Magn Reson Med. 2005 May;53(5):1088-95. (PMID: 15844157)
Neuroimage. 2011 Apr 15;55(4):1577-86. (PMID: 21256236)
PLoS One. 2012;7(11):e45996. (PMID: 23139736)
Magn Reson Imaging. 2011 Jan;29(1):111-25. (PMID: 20933352)
Neuroradiology. 2004 May;46(5):339-50. (PMID: 15103435)
Brain Cogn. 2019 Nov;136:103615. (PMID: 31563082)
Magn Reson Med. 2009 Jun;61(6):1336-49. (PMID: 19319973)
Neuroimage. 2014 Oct 15;100:358-69. (PMID: 24945661)
Neuroimage. 2015 Feb 1;106:284-99. (PMID: 25433212)
Top Magn Reson Imaging. 2002 Feb;13(1):61-70. (PMID: 11847501)
Neuroimage. 2016 Jan 1;124(Pt B):1125-1130. (PMID: 26048622)
Hum Brain Mapp. 2016 Dec;37(12):4405-4424. (PMID: 27436169)
Dev Med Child Neurol. 2012 Sep;54(9):809-14. (PMID: 22803787)
Neuroimage. 2006 Oct 1;32(4):1538-48. (PMID: 16843682)
Dev Med Child Neurol. 2015 Apr;57(4):328-38. (PMID: 25358534)
Contributed Indexing :
Keywords: Diffusion tensor imaging (DTI); Nonlinear registration; Pediatric; Tract-based spatial statistics (TBSS)
Entry Date(s) :
Date Created: 20200509 Latest Revision: 20200928
Update Code :
20210301
PubMed Central ID :
PMC7200313
DOI :
10.1016/j.mex.2020.100878
PMID :
32382519
Czasopismo naukowe
Analysis of scalar maps obtained by diffusion tensor imaging (DTI) produce valuable information about the microstructure of the brain white matter. The DTI scanning of child populations, compared with adult groups, requires specifically designed data acquisition protocols that take into consideration the trade-off between the scanning time, diffusion strength, number of diffusion directions, and the applied analysis techniques. Furthermore, inadequate normalization of DTI images and non-robust tensor reconstruction have profound effects on data analyses and may produce biased statistical results. Here, we present an acquisition sequence that was specifically designed for pediatric populations, and describe the analysis steps of the DTI data collected from extremely preterm-born young school-aged children and their age- and gender-matched controls. The protocol utilizes multiple software packages to address the effects of artifacts and to produce robust tensor estimation. The computation of a population-specific template and the nonlinear registration of tensorial images with this template were implemented to improve alignment of brain images from the children.
(© 2020 The Author(s). Published by Elsevier B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies