Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A New Glycogen Storage Disease Caused by a Dominant PYGM Mutation.

Tytuł:
A New Glycogen Storage Disease Caused by a Dominant PYGM Mutation.
Autorzy:
Echaniz-Laguna A; Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France.; French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France.; Inserm U1195 & Paris-Saclay University, Le Kremlin Bicêtre, France.
Lornage X; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.; INSERM U1258, Illkirch, France.; CNRS UMR7104, Illkirch, France.; Strasbourg University, Illkirch, France.
Laforêt P; Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Garches, France.; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Garches, France.
Orngreen MC; Copenhagen Neuromuscular Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
Edelweiss E; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.; INSERM U1258, Illkirch, France.; CNRS UMR7104, Illkirch, France.; Strasbourg University, Illkirch, France.
Brochier G; Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France.; Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.
Bui MT; Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France.
Silva-Rojas R; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.; INSERM U1258, Illkirch, France.; CNRS UMR7104, Illkirch, France.; Strasbourg University, Illkirch, France.
Birck C; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.; INSERM U1258, Illkirch, France.; CNRS UMR7104, Illkirch, France.; Strasbourg University, Illkirch, France.; Structural Biology & Genomics Platform, IGBMC, Illkirch, France.
Lannes B; Department of Pathology, Strasbourg University Hospital, Strasbourg, France.
Romero NB; Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France.; Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.; Université Sorbonne, UPMC Paris 06 University, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France.
Vissing J; Copenhagen Neuromuscular Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
Laporte J; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.; INSERM U1258, Illkirch, France.; CNRS UMR7104, Illkirch, France.; Strasbourg University, Illkirch, France.
Böhm J; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.; INSERM U1258, Illkirch, France.; CNRS UMR7104, Illkirch, France.; Strasbourg University, Illkirch, France.
Źródło:
Annals of neurology [Ann Neurol] 2020 Aug; Vol. 88 (2), pp. 274-282. Date of Electronic Publication: 2020 Jun 03.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: New York, NY : Wiley-Liss
Original Publication: Boston, Little, Brown.
MeSH Terms:
Glycogen Phosphorylase, Muscle Form/*genetics
Glycogen Storage Disease/*diagnosis
Glycogen Storage Disease/*genetics
Mutation/*genetics
Adult ; Female ; Humans ; Male ; Middle Aged ; Pedigree
References:
Roach PJ. Glycogen and its metabolism. Curr Mol Med 2002;2:101-120.
Ellingwood SS, Cheng A. Biochemical and clinical aspects of glycogen storage diseases. J Endocrinol 2018;238:R131-R141.
Godfrey R, Quinlivan R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol 2016;12:393-402.
Martin MA, Rubio JC, Buchbinder J, et al. Molecular heterogeneity of myophosphorylase deficiency (McArdle's disease): a genotype-phenotype correlation study. Ann Neurol 2001;50:574-581.
McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci 1951;10:13-35.
Tsujino S, Shanske S, DiMauro S. Molecular genetic heterogeneity of myophosphorylase deficiency (McArdle's disease). N Engl J Med 1993;329:241-245.
Orngreen MC, Duno M, Ejstrup R, et al. Fuel utilization in subjects with carnitine palmitoyltransferase 2 gene mutations. Ann Neurol 2005;57:60-66.
van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, et al. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 2001;536:295-304.
Preisler N, Laforet P, Madsen KL, et al. Fat and carbohydrate metabolism during exercise in late-onset Pompe disease. Mol Genet Metab 2012;107:462-468.
Garibaldi M, Rendu J, Brocard J, et al. 'Dusty core disease' (DuCD): expanding morphological spectrum of RYR1 recessive myopathies. Acta Neuropathol Commun 2019;7:3.
Abdulrahman W, Uhring M, Kolb-Cheynel I, et al. A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal Biochem 2009;385:383-385.
Abdulrahman W, Iltis I, Radu L, et al. ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities. Proc Natl Acad Sci U S A 2013;110:E633-E642.
Negroni L, Zivy M, Lemaire C. Mass spectrometry of mitochondrial membrane protein complexes. Methods Mol Biol 1635;2017:233-246.
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 2000;78:1606-1619.
Mason M, Fasella P. Assay of glycogen phosphorylase by differential spectropolarimetry. Anal Biochem 1971;43:57-65.
Burwinkel B, Scott JW, Buhrer C, et al. Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet 2005;76:1034-1049.
Nogales-Gadea G, Brull A, Santalla A, et al. McArdle disease: update of reported mutations and polymorphisms in the PYGM gene. Hum Mutat 2015;36:669-678.
Lukacs CM, Oikonomakos NG, Crowther RL, et al. The crystal structure of human muscle glycogen phosphorylase a with bound glucose and AMP: an intermediate conformation with T-state and R-state features. Proteins 2006;63:1123-1126.
Hnia K, Ramspacher C, Vermot J, Laporte J. Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res 2015;360:591-608.
McCue ME, Valberg SJ, Miller MB, et al. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 2008;91:458-466.
Vissing J, Haller RG. A diagnostic cycle test for McArdle's disease. Ann Neurol 2003;54:539-542.
Haller RG, Vissing J. Spontaneous "second wind" and glucose-induced second "second wind" in McArdle disease: oxidative mechanisms. Arch Neurol 2002;59:1395-1402.
Krebs EG, Kent AB, Fischer EH. The muscle phosphorylase b kinase reaction. J Biol Chem 1958;231:73-83.
Assaf SA, Yunis AA. Subunit structure and amino-acid composition of crystallized human-muscle glycogen phosphorylase. Eur J Biochem 1973;35:282-289.
Barford D, Hu SH, Johnson LN. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 1991;218:233-260.
Plaideau C, Lai YC, Kviklyte S, et al. Effects of pharmacological AMP deaminase inhibition and Ampd1 deletion on nucleotide levels and AMPK activation in contracting skeletal muscle. Chem Biol 2014;21:1497-1510.
Malfatti E, Nilsson J, Hedberg-Oldfors C, et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol 2014;76:891-898.
Substance Nomenclature:
EC 2.4.1.- (Glycogen Phosphorylase, Muscle Form)
Entry Date(s):
Date Created: 20200510 Date Completed: 20201209 Latest Revision: 20201214
Update Code:
20240105
DOI:
10.1002/ana.25771
PMID:
32386344
Czasopismo naukowe
Objective: Glycogen storage diseases (GSDs) are severe human disorders resulting from abnormal glucose metabolism, and all previously described GSDs segregate as autosomal recessive or X-linked traits. In this study, we aimed to molecularly characterize the first family with a dominant GSD.
Methods: We describe a dominant GSD family with 13 affected members presenting with adult-onset muscle weakness, and we provide clinical, metabolic, histological, and ultrastructural data. We performed exome sequencing to uncover the causative gene, and functional experiments in the cell model and on recombinant proteins to investigate the pathogenic effect of the identified mutation.
Results: We identified a heterozygous missense mutation in PYGM segregating with the disease in the family. PYGM codes for myophosphorylase, the enzyme catalyzing the initial step of glycogen breakdown. Enzymatic tests revealed that the PYGM mutation impairs the AMP-independent myophosphorylase activity, whereas the AMP-dependent activity was preserved. Further functional investigations demonstrated an altered conformation and aggregation of mutant myophosphorylase, and the concurrent accumulation of the intermediate filament desmin in the myofibers of the patients.
Interpretation: Overall, this study describes the first example of a dominant glycogen storage disease in humans, and elucidates the underlying pathomechanisms by deciphering the sequence of events from the PYGM mutation to the accumulation of glycogen in the muscle fibers. ANN NEUROL 2020;88:274-282.
(© 2020 American Neurological Association.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies